26.04.2019

Возможности системы позиционирования ПЧ VF-AS3

Преобразователь частоты VF-AS3 Toshiba позволяет осуществлять контроль положения для таких применений, как управление высокоточными обрабатывающими станками, поворотными столами, складским оборудованием, перемоточными станками.

Контроль позиционирования с помощью частотника VF-AS3
Контроль позиционирования с помощью частотного преобразователя VF-AS3

Если сравнивать ПЧ VF-AS3 Toshiba и Schneider Electric Altivar ATV930, то в продукции Schneider Electric не найдется приводов с возможностью позиционирования, которые представлены в этом обзоре. У приводов VF-AS3 (в отличии от Altivar) также есть небольшой встроенный ПЛК, возможность подчиненного управления другими 10 частотниками (Master follower control), перераспределение нагрузки на несколько двигателей.

Сравнение Toshiba VF-AS3 и Schneider Electric Altivar ATV930
Сравнение Toshiba VF-AS3 и Schneider Electric Altivar ATV930

Для намоточных и перемоточных станков доступны 2 встроенных ПИД-регулятора для регулирования скорости и контроля позиции регулятора натяжения.

Функция позиционирования имеет несколько важных возможностей работы

  • блокировка вращения вала при остановках (Servo Lock)
  • остановка в нулевом (заданном) положении (Zero positioning)
  • остановка вблизи заданной точки при получении сигнала с датчиков с включением ПИД-регулятора
  • импульсный вход (Pulse train input) для движения по шагам; остановка после отключения командных импульсов
  • от точки к точке (Point to point); остановка в заданных положениях
  • ориентация (Orientation); точная установка угла поворота вала шпинделя и т.п.

Выбор контроля позиционирования

Электродвигатель Привод Функция позиционирования
Датчик Асинхронный Синхронный Опция Нулевое положение Импульсный вход От точки к точке Ориентация
Без датчика не поддерживается 6 не требуется Да не поддерживается не поддерживается не поддерживается
Энкодер 10, 11 12 не требуется Да не поддерживается Да не поддерживается
Энкодер 10, 11 12 VEC008Z Да Да Да Да
Резольвер 10, 11 12 VEC010Z Да Да Да Да
Система позиционирования с помощью частотного преобразователя VF-AS3
Система позиционирования с помощью частотного преобразователя VF-AS3

Подключение энкодера к частотному преобразователю

Схема подключения энкодера к частотному преобразователю VF-AS3 без опций

На представленной ниже схеме питание энкодера осуществляется от встроенного источника ПЧ. Если используется энкодер на 5 В или 12 В, необходимо предусмотреть соответствующий внешний источник питания.

Схема подключения энкодера к частотнику AS3 Toshiba
Схема подключения энкодера к частотному преобразователю AS3 Toshiba

Нужно помнить об ограничении на скорость обработки входов S4/S5 (максимум 30000 имп./сек). В случае применения 1000-пульсного инкрементального энкодера с 4-х полюсным двигателем, максимальная скорость вращения ротора для этой функции составит 30000 имп. в сек/ {1000 имп. / (4пол./2)} = 60 Гц.

Схема подключения энкодера к частотному преобразователю VF-AS3 с опцией VEC008Z

Опциональный модуль VEC008Z позволяет подключать инкрементальный энкодер с контрольной точкой (Фаза Z). Доступные варианты питания энкодера (клеммы PGVC и PGCC): 5В, 12 В и 24 В.

Контроль позиционирования с помощью энкодера с импульсного входа частотника
Схема подключения энкодера частотного преобразователя с опцией VEC008Z

Функция блокировки вращения вала Servo lock при остановках двигателя

Как и при работе сервопривода, параметры частотника AS3 позволяют вам управлять двигателем при частоте вращения 0 Гц, просто подавая сигнал работы вперед или назад. Эти параметры используются для удержания остановившегося двигателя. Использование этого функционала возможно только при наличии энкодера на двигателе.

Обязательным условием работы этой функции является задание параметра Pt[F015] = 11 (векторный контроль с обратной связью от энкодера) и задание стартовой частоты в параметре [F240] = 0 (Гц).

Для получения этого режима любой цифровой вход (F110…F124) программируется на число 70(71). Режим SRVL (Servo lock) ON. Лучше назначать эту функцию входу RES [F113], который обычно используется для остановки двигателя.

Имейте в виду, эти параметры не предназначены для контроля положения ротора: когда нагрузка превышает мощность удержания двигателя, он будет вращаться.

Блокировка вращения вала двигателя во время остановки с помощью частотника AS3 Toshiba
Блокировка вращения вала двигателя во время остановки с помощью частотного преобразователя AS3 Toshiba

Для удержания вала двигателя функция блокировки создает стартовое усилие более 150%. При этом снижается уровень тепловой защиты, как и в случае работы на низкой скорости.

Поэтому необходимо тщательно настроить следующие параметры:

  • OLM [F017] — выбор характеристик теплозащиты
  • tHrA [F031] — ток тепловой перегрузки двигателя
  • [F606] — предел частоты снижения перегрузки двигателя
  • [F607] — время перегрузки двигателя

Остановка в строго заданном положении (Zero positioning) с использованием датчиков

Простое позиционирование в заданное датчиком положение с уточнением с помощью ПИД-регулятора в режиме управления с датчиком скорости (энкодером) или без датчика скорости при использовании синхронного двигателя.

Когда параметр Pt [F015] = 10 (контроль с обратной связью от энкодера) или Pt [F015] = 11 (векторный контроль с обратной связью от энкодера) или Pt [F015] = 6 (контроль без обратной связи для синхронных двигателей), то позиционирование осуществляется сигналом на клемме цифрового входа [F110…F124] = 72(73) (SIMP/Simple positioning — Простое позиционирование). Т.е. при достижении датчика, подключенного к клемме с настройкой 72, привод AS3 включит режим приближения к этому датчику.

Позиционирование заканчивается, если номер импульса энкодера находится в пределах значения заданного диапазона отклонения от нуля. Этот диапазон настраивается с помощью параметра [F381] (диапазон завершения простого позиционирования). После остановки позиционирования на выходные клеммы FL_, R1_, R2_ может быть выведен сигнал с помощью назначения числа 118 (119) (Сигнал завершения позиционирования) в соответствующие параметры [F130, F132…F134, F137…F138].

Подключение датчиков к частотному преобразователю AS3 Toshiba для точного позиционирования
Подключение датчиков к частотному преобразователю AS3 Toshiba для точного позиционирования

Важно также настроить ПИД-регулятор на задачу позиционирования. Он настраивается в параметре [F359] = 3 (положительное ПИД-регулирование при позиционировании) или [F359] = 13 (отрицательное ПИД-регулирование при позиционировании). ПИД-регулятор не включается, пока не поступит сигнал с датчика на входную клемму с настройкой 72.

Схема задания параметров внутреннего ПИД-регулятора позиционирования
Схема задания параметров внутреннего ПИД-регулятора позиционирования

Типичный процесс позиционирования показан на диаграмме ниже. Кнопка на клемме F привода запускает двигатель с предустановленной скоростью 1, задаваемой от контроллера с помощью запрограммированного входа S1. При достижении датчика S2 запускается пониженная скорость двигателя (контроллер захватывает этот режим), предназначенная для подготовки к точному позиционированию. При достижении датчика S3 запускается процесс позиционирования (контроллер тоже захватывает этот режим), который состоит в том, чтобы с помощью возвратно-поступательных движений вернуть механизм к точке получения сигнала от датчика S3 с заданной погрешностью (диапазон остановки).

Важно! Выполнение поиска положения остановки в высокоскоростном режиме может вызвать отключение по токовой перегрузке, отключение по перенапряжению и т. д. Всегда старайтесь перейти к низкоскоростному режиму и только потом включите сигнал позиционирования.

Простое позиционирование механизма с помощью частотника AS3 Toshiba
Простое позиционирование механизма с помощью частотного преобразователя AS3 Toshiba

Параметры для данного режима

ПараметрОписаниеВозможные значения
Pt [F015] Настройка V/f 6 (контроль без обратной связи для синхронных двигателей)
10 (контроль с обратной связью от энкодера)
11 (векторный контроль с обратной связью от энкодера)
F375Число импульсов на 1 оборот энкодера Например, 1024
F376Выбор типа датчика скоростиС опцией энкодера/резольвера или без опции
F377Обнаружение отключения датчика скорости1 (только для опций энкодера/резольвера)
F379Напряжение питания датчика скорости0 (5 В)
1 (12 В)
2 (24 В)
F381Диапазон завершения простого позиционирования Например, 100 импульсов
F240Частота старта0 Гц (обязательно для этого режима)
F241Частота запуска0 Гц (обязательно для этого режима)
F243Частота останова0 Гц (обязательно для этого режима)

Настройки ПИД-регулятора в основном сводятся к заданию следующих коэффициентов:

  • [F362] — пропорциональный коэффициент
  • [F363] — интегральный коэффициент
  • [F364] — верхний предел изменения ПИД (для стабилизации регулирования)*
  • [F365] — нижний предел изменения ПИД (для стабилизации регулирования)*
  • [F366] — дифференциальный коэффициент

*Отклонение представляет собой текущую позицию, преобразованную в частоту, которая получается по следующей формуле:

Формула для точного позиционирования ПИД-регулятором

Возможные проблемы

Если во время замедления при ПИД-регулировании происходит отключение по перенапряжению, уменьшите значение [F362] (пропорциональный коэффициент усиления PID1). Время замедления станет больше.

Важно! Настройка [dEC] (время замедления 1) недопустима при простом позиционировании ПИД-регулятора.


Импульсный вход для позиционирования механизма по инкрементальному энкодеру или резольверу

Контроль позиционирования с помощью энкодера с импульсного входа частотника
Контроль позиционирования с помощью энкодера с импульсного входа частотного преобразователя

Алгоритм работы

  1. На импульсные входы (S4, S5) со смещением 90° подаются командные импульсы от управляющего устройства. Направление смещения +90° или -90° позволяет задавать направление вращения двигателя.
  2. На входы платы VEC008Z подаются импульсы с энкодера. Но это происходит с задержкой, потому что двигателю вначале необходимо стартовать.
  3. Разница между импульсами энкодера и командными импульсами называется импульсами понижения (droop pulses), которые хранятся в специальном счетчике отклонений частотного преобразователя. Импульсы понижения являются командой установки скорости вращения при управлении положением.
  4. Во время работы с постоянной скоростью в счетчике отклонений присутствует постоянная величина импульсов понижения. По мере того как скорость изменяется, количество импульсов понижения также изменяется.
  5. Когда ввод командного импульса прекращается, импульсы понижения в счетчике уменьшаются, а скорость двигателя замедляется, затем двигатель останавливается.
  6. Поскольку двигатель вращается с задержкой после подачи команды по количеству импульсов понижения, он останавливается немного позже поступления команды останова (прекращения командных импульсов). Это время задержки называется заданным временем останова.
Контроль позиционирования с помощью частотника VF-AS3 и энкодера/резольвера
Контроль позиционирования с помощью частотного преобразователя VF-AS3 и энкодера/резольвера

Настройка параметров частотника

При подключении опции датчика скорости (энкодера/резольвера) необходимо настроить следующие параметры частотного преобразователя:

ПараметрВозможное значениеОписание
[A510]2 или 32 — однофазный импульсный режим управления
3 — двухфазный (квадратурный) импульсный режим управления (2 серии импульсов со смещением)
[F146] / [F147]1/0 или 0/1
1/1
1/0 или 0/1 — для однофазного входа S4 или S5 соответственно
1/1 — для двухфазного входа с помощью клемм S4 и S5
[F114]178(179)Команда готовности к позиционному контролю (PSRDY) для входа S1
[F117]183(183)Функция движения вперед/назад по командным импульсам (PSCMD) для входа S4
[F118]182(183)Функция движения вперед/назад по командным импульсам (PSCMD) для входа S4

Схема подключения внешней аппаратуры к инвертору для движения по управляющим импульсам

Контроль позиционирования с помощью энкодера с импульсного входа ПЧ
Контроль позиционирования с помощью энкодера с импульсного входа ПЧ

На представленной выше схеме движение двигателя по шагам начинается с подачи сигнала на вход S1 (разрешение движения по импульсам) и затем на вход F (пуск). На импульсные входы (S4, S5) со смещением 90° подаются командные импульсы от управляющего устройства. Направление смещения +90° или -90° позволяет задавать направление вращения двигателя.

Для начального разгона двигателя необходимо подавать импульсы достаточно редко. Количество поданных импульсов задает позицию вала двигателя. В процессе торможения также необходимо увеличивать временные промежутки между импульсами.

Отключение сигналов производится в обратной последовательности. После прекращения подачи командных импульсов вначале снимается сигнал с входа F, затем с входа S1.

Отключение функции позиционирования по командным импульсам

Если функция позиционирования по командным импульсам больше не требуется, необходимо выполнить очистку счетчиков импульсов.

Для очистки счетчика импульсов (позиции) задайте параметр [A537] = 0 (для очистки импульсом с OFF на ON на входе S4/S5) или [A537] = 1 (для очистки постоянным сигналом ON на входе S4/S5). Далее задайте для входов S4/S5 параметры [F117] / [F118] = 184(185) для перевода их в режим очистки и подайте соответствующий настроенному параметру [A537] сигнал на входы S4/S5.


От точки к точке. Остановка в заданных позициях

Установите параметры для системы позиционирования, такие как количество импульсов, время разгона/торможения и предварительно установленную скорость работы между точками позиций.

Остановка в заданной позиции
Остановка в заданной позиции

Схема подключения внешней аппаратуры к инвертору для движения по заданным точкам

Контроль позиционирования с помощью энкодера и заданных точек
Контроль позиционирования с помощью энкодера и заданных точек

Функционирование этой схемы хорошо поясняется на представленной ниже временной диаграмме.

Диаграмма работы ПЧ в режиме перехода по позициям
Диаграмма работы ПЧ в режиме перехода по позициям

Вначале запускается контроль позиционирования сигналом на вход S5. Затем запускается двигатель сигналом на вход F. С помощью комбинаций ключей на входах S1 и S2 выбирается нужная позиция, к которой привод должен двигаться. При сигнале на вход S1 движение идет в прямом направлении к позиции 1. При добавлении сигнала S2 движение идет в прямом направлении к позиции 3. При исчезновении сигнала с входа S1 (сигнал S2 остается) движение идет в обратном направлении к позиции 2.

Визуальное отображение работы показано на диаграмме ниже. Для примера взят энкодер на 1024 позиций на 1 оборот. Т.е. 10 оборотов равны значению 10240, 40 оборотов равны значению 40960 и 100 оборотов равны значению 102400.

Диаграмма работы ПЧ в режиме перехода по позициям - подсчет импульсов
Диаграмма работы ПЧ в режиме перехода по позициям — подсчет импульсов

Настройка значений позиций 1, 2, 3 показана на временной диаграмме ниже. Значения задаются в сдвоенных параметрах [A544]+[A545] — позиция 1 (10240 импульсов = 10 оборотов), [A552]+[A553] — позиция 2, [A560]+[A561] — позиция 3. Параметры сдвоены для возможности ввода очень больших чисел — количества импульсов (позиций энкодера). Например, позиция 10240 разбивается на числа 1 и 0240 (по 4 цифры в каждый параметр), незначащие нули перед числом не опускаются.

Диаграмма работы ПЧ в режиме перехода по позициям - задание параметров позиций
Диаграмма работы ПЧ в режиме перехода по позициям — задание параметров позиций

Примечание 1. Задайте корректное время разгона и торможения для режима каждой позиции с помощью параметров [A547]+[A548], [A555]+[A564], [A563]+[A556]. См. ниже.

Диаграмма работы ПЧ в режиме перехода по позициям - задание времени разгона и торможения
Диаграмма работы ПЧ в режиме перехода по позициям — задание времени разгона и торможения

Примечание 2. С помощью параметров [A546], [A554], [A562] доступны настройки разгона/торможения:

Значение параметраРежим работыШаблон разгона/торможенияЗнак
0Команда абсолютного позиционированияЛинейная характеристика Плюс
1Команда абсолютного позиционирования Линейная характеристика Минус
2Команда абсолютного позиционирования S-образная характеристикаПлюс
3Команда абсолютного позиционирования S-образная характеристика Минус
4Команда увеличения позицииЛинейная характеристика Плюс
5Команда увеличения позиции Линейная характеристика Минус
6Команда увеличения позиции S-образная характеристика Плюс
7Команда увеличения позиции S-образная характеристика Минус

В приведенном выше примере программируются только 3 позиции остановки из 7. Задаются они по аналогии с примером выше с помощью следующих параметров:

Номер точки Позиция (число импульсов) Шаблон разгона/торможения Максимальная скорость Время разгона Время торможения Код включения
Верхние 4 цифры Нижние 4 цифры Сигнал S1 Сигнал S2 Сигнал S3
1 A544 A545 A546 Sr1 A547 A548 X
2 A552 A553 A554 Sr2 A555 A556 X
3 A560 A561 A562 Sr3 A563 A564 X X
4 A568 A569 A570 Sr4 A571 A572 X
5 A576 A577 A578 Sr5 A579 A580 X X
6 A584 A585 A586 Sr6 A587 A588 X X
7 A592 A593 A594 Sr7 A595 A596 X X X

Тестовые настройки для 3 позиций остановки для вышестоящего примера

Название параметраЗначениеОписаниеПояснение
Sr150 ГцЗаданная скорость 1Позиция остановки 1
Sr250 ГцЗаданная скорость 2Позиция остановки 2
Sr350 ГцЗаданная скорость 2Позиция остановки 2
F118178Функция входной клеммы S5Команда готовности к позиционному контролю (PSRDY) для входа S5
F3626Коэффициент пропорциональности ПИД-регулятора
F3751024Число импульсов энкодера на 1 оборот
F3761 или 11Использование опции датчика скорости VECxxxZ
F3790 (5 В)Напряжение питания энкодера
F46010Отклик контроля скорости
A5101Режим перемещения по нескольким позициям
A5441Верхние 4 цифры позиции останова 1Позиция задается числом импульсов датчика скорости
A545240Нижние 4 цифры позиции останова 1Позиция задается числом импульсов датчика скорости
A5462Шаблон разгона/торможения для 1 позиции2 это шаблон S-кривой
A5470,01 секВремя разгона для 1 позиции
A5480,01 секВремя торможения для 1 позиции
A5524Верхние 4 цифры позиции останова 2 Позиция задается числом импульсов датчика скорости
A553960Нижние 4 цифры позиции останова 2 Позиция задается числом импульсов датчика скорости
A5542Шаблон разгона/торможения для 2 позиции
A5550 секВремя разгона для 2 позиции
A5560 секВремя торможения для 2 позиции
A56010Верхние 4 цифры позиции останова 3 Позиция задается числом импульсов датчика скорости
A5612400Нижние 4 цифры позиции останова 3Позиция задается числом импульсов датчика скорости
A5622Шаблон разгона/торможения для 3 позиции
A5630 секВремя разгона для 3 позиции
A5640 секВремя торможения для 3 позиции

Коэффициент пропорциональности ПИД-регулятора [F362] рассчитывается примерно так: 500 · число пар полюсов двигателя/[F375] (Число импульсов энкодера на 1 оборот)

Если для установления позиции требуется время в процессе управления позиционированием, увеличьте [F362] на 0,1. Если после установления позиции возникает вибрация, уменьшите [F362] на 0,1.

После остановки позиционирования на выходные клеммы FL_, R1_, R2_ может быть выведен сигнал завершения позиционирования при вводе соответствующие параметры [F130, F132…F134, F137…F138] числа 118 (119).


Ориентация. Точная установка угла поворота

Преобразователь частоты VF-AS3 позволяет задать угол поворота вала двигателя.

Ориентация вала двигателя
Ориентация вала двигателя

Привод может регулировать положение остановки (управление ориентацией) с помощью датчика положения (энкодера), прикрепленного к валу машины. Когда включается команда сигнала ориентации во время работы на скорости, то производится торможение до «скорости поиска точки ориентации». После этого рассчитывается «расстояние до ориентационной остановки», и, наконец, финальная остановка в заданном положении. Затем вводится состояние сервоблокировки ориентации.

Ориентация начинается по сигналу поступившему на клемму цифрового входа [F110…F124] = 190(191) (ORTST/Orientation start — старт контроля ориентации).

Подробнее о настройке системы ориентации по заданному углу


Преобразователь частоты вместо контроллера

Обычно функции позиционирования выполняются с помощью специальных модулей ПЛК. Понятно, что это дополнительные затраты как в стоимости, так и в пространстве для размещения в щите управления.

Компания СПИК СЗМА как единственный официальный дилер Toshiba предлагает купить для решения задач позиционирования частотники серии VF-AS3. Вы получаете максимально качественную техническую поддержку и гарантию долгой работы преобразователя частоты.

19.04.2019

Функция безопасности, встроенная в преобразователь частоты VF-AS3 Toshiba, позволяет разрабатывать приложения, ориентированные на защиту человека и машины. Встроенные STO (Safe Torque Off) и дополнительные опциональные функции безопасности SS1 (Safe Stop 1), SOS (Safe Operating Stop), SS2 (Safe Stop 2), SBS (Safe Brake Control), SLS (Safely-Limited Speed), SDI (Safe Direction) обеспечивают следующие преимущества:

  • соответствующие стандартам функции безопасности
  • снижение затрат на дополнительное внешнее защитное оборудование
  • уменьшение затрат на монтаж проводов и требования к пространству

Приводы VF-AS3 Toshiba соответствуют нормативным требованиям стандарта МЭК 61800-5-2 для реализации функции безопасности.

Безопасное отключение крутящего момента (STO), реализованное в частотнике VF-AS3 TOSHIBA
Safe Torque Off (STO)

Функция STO (Safe Torque Off) — Безопасное отключение крутящего момента

Назначение функции — привести двигатель в состояние без крутящего момента, чтобы оно соответствовало требованиям безопасности, поскольку на уровне двигателя крутящий момент отсутствует. Силовые модули преобразователя частоты блокируются и двигатель останавливается (или запрещается запуск двигателя).


Описание

ПОРАЖЕНИЕ ЭЛЕКТРИЧЕСКИМ ТОКОМ ПРИ НЕПРАВИЛЬНОМ ИСПОЛЬЗОВАНИИ
Функция безопасности STO (Safe Torque Off) не приводит к электрической изоляции внутреннего содержимого частотного преобразователя. В звене постоянного тока будет присутствовать напряжение.
Отключите сетевое напряжение с помощью соответствующего выключателя для обесточивания ПЧ.
Несоблюдение этих инструкций может привести к летальному исходу или серьезным травмам.

Эта функция переводит машину в безопасное состояние без крутящего момента и/или предотвращает ее случайный запуск. Функция безопасного отключения крутящего момента (функция безопасности STO) может использоваться для эффективной реализации предотвращения неожиданного запуска, делая остановки безопасными, предотвращая подачу питания только на двигатель и сохраняя при этом питание цепей управления главного привода. Принципы и требования предотвращения неожиданного запуска описаны в стандарте EN 1037: 1995 + A1.
Логические входы частотного преобразователя (STOA и STOB) всегда назначены на эту функцию.
Состояние функции безопасности STO может отображаться с панели управления привода или с помощью программного обеспечения для ввода в эксплуатацию.

ВАЖНО! Если задержка между состоянием входов STOA и STOB превышает 1 сек, срабатывает функция безопасности STO и выдается ошибка с кодом ошибки [Ошибка цепи STO] PrF.

Функция безопасности STO определена в разделе 4.2.2.2 стандарта МЭК 61800-5-2 (издание 1.0 2007.07):
Мощность, которая может вызвать вращение (или движение в случае линейного двигателя), не подается на двигатель. PDS (SR) (система силового привода, подходящая для использования в приложениях, связанных с безопасностью) не будет подавать энергию на двигатель, который может генерировать крутящий момент (или усилие, в случае линейного двигателя).

  • ПРИМЕЧАНИЕ 1. Эта функция безопасности соответствует неконтролируемому останову в соответствии с категорией останова 0 в стандарте МЭК 60204–1
  • ПРИМЕЧАНИЕ 2. Эта функция безопасности может использоваться, когда требуется отключение питания для предотвращения неожиданного запуска
  • ПРИМЕЧАНИЕ 3.: В ситуациях, когда присутствуют внешние воздействия (например, падение подвешенных грузов), могут потребоваться дополнительные меры (например, механические тормоза) для предотвращения любой опасности
  • ПРИМЕЧАНИЕ 4. Электронное оборудование и контакторы не обеспечивают достаточной защиты от поражения электрическим током, и могут потребоваться дополнительные меры по изоляции

Обеспечиваемые уровни безопасности

  • уровень полноты безопасности SIL (Safety Integrity Level) в соответствии с МЭК 61508: SIL3
  • уровень производительности PL (Performance Level) в соответствии с ISO-13849: PLe

Обеспечиваемые аварийные операции (по стандарту МЭК 60204-1)

Аварийное отключение

Эта функция требует внешних переключающих компонентов и не может быть реализована с помощью функций привода, таких как безопасное отключение крутящего момента (STO).

Аварийный останов

Аварийный останов должен работать таким образом, чтобы при его активации опасное движение машины прекращалось, и машина не могла запуститься ни при каких обстоятельствах, даже после того, как кнопка аварийного останова отпущена.
Аварийный останов должен функционировать либо как категория останова 0, либо как категория останова 1.
Категория останова 0 означает, что питание двигателя отключается немедленно. Категория останова 0 эквивалентна функции безопасного отключения крутящего момента (STO), определенной стандартом EN 61800-5-2.
В дополнение к требованиям для останова (см. 9.2.5.3 МЭК 60204-1) функция аварийного останова имеет следующие требования:

  • отменяет все другие функции и операции во всех режимах
  • его сброс возможен только при ручном воздействии в том месте, где была подана команда. Сброс команды не должен перезапускать машину, а только разрешать перезапуск
  • в машинном окружении (стандарт МЭК 60204-1 и директива о машинном оборудовании), когда функция безопасности STO используется для управления категорией аварийного останова 0, двигатель не должен запускаться автоматически, если функция безопасности STO сработала и деактивирована (в цикле подачи или сброса питания)
  • если конфигурация привода разрешает автоматический перезапуск машины после отключения функции безопасности STO, необходим дополнительный модуль безопасности (например, модуль Preventa)
  • если использование дополнительного модуля безопасности невозможно, управление приводом должно быть настроено на 2-х или 3-х проводный режим работы частотного преобразователя
Функция безопасности STO, встроенная в частотник VF-AS3, позволяет разрабатывать приложения, ориентированные на защиту человека и машины
Функция безопасности STO, встроенная в частотный преобразователь VF-AS3, позволяет разрабатывать приложения, ориентированные на защиту человека и машины

Типы двигателей

Функция безопасности STO может использоваться с синхронными и асинхронными двигателями.

Предпосылки для использования функций безопасности

Для правильной работы должны быть выполнены следующие условия:

  • размер двигателя адекватен применению и не работает на пределе своей мощности
  • типоразмер привода правильно выбран для сети электропитания, соединяющих проводников, двигателя и области применения и не работает на пределе своей мощности, как указано в каталоге
  • при необходимости используется дополнительное опциональное оборудование, например, выходной фильтр
  • привод правильно настроен с правильными характеристиками контура скорости и крутящего момента для технологического процесса; профиль опорной частоты применим к контуру управления приводом

Состояние функции безопасности

ЕслиТо
Режим Safe Torque Off (STO) не активенЖелтый светодиод ASF выключен
STO обнаруженСиловой мост блокируется дополнительным оборудованием
На ЖК-дисплее включается отображение STO
Желтый светодиод ASF включен
[Обнаружена ошибка цепи STO]*Силовой мост блокируется
ЖК-дисплей горит постоянно красным светом
Терминал графического дисплея отображает сообщение PrF
Желтый светодиод ASF включен

*Возможные причины: превышение задержки между сигналами STOA и STOB более 1 сек или обнаружение внутренней аппаратной ошибки

Отображение срабатывания функции STO с помощью светодиода ASF на приводе Toshiba AS3
Отображение срабатывания функции STO с помощью светодиода ASF

Технические данные

Электрические параметры

Функция безопасности должна использоваться только в положительной логике (Source): ток поступает на вход.

Входы STOA и STOB и сигнальные входы защищены от обратной полярности внутренними компонентами частотного преобразователя.

Уровни входных сигналовЗначениеЕдиницы измерения
Логический нуль< 5 или обрывВ (постоянного тока)
Логическая единица> 11В (постоянного тока)
Ток при 19 В11 мА
Задержка между сигналами STOA и STOB< 1сек
Время отклика функции безопасности< 10мсек

Сертифицированные архитектуры подключения

ПРИМЕЧАНИЕ. Для сертификации, относящейся к функциональным аспектам, будет рассматриваться только PDS (SR) (Power Drive System suitable for use in safety-related applications: система силового привода, подходящая для использования в приложениях, связанных с безопасностью), а не вся система, в которую она интегрирована, чтобы помочь обеспечить функциональную безопасность двигателя или системы/процесса.

Обеспечиваются три вида безопасности процессов системы

  • безопасность процесса, связанная с подключением одного или нескольких электродвигателей
  • безопасность процесса, связанная с подключением одного или нескольких электродвигателей и использованием модуля безопасности Preventa XPS-AF
  • безопасность процесса, связанная с подключением одного электродвигателя и использованием модуля безопасности Preventa XPS-AV

Функции безопасности PDS (SR) являются частью общей системы. Если качественные и количественные цели, связанные с безопасностью для конечного приложения, требуют некоторых корректировок для обеспечения безопасного использования функций безопасности, интегратор BDM (Basic Drive Module) отвечает за эти дополнительные изменения (например, управление механическим тормозом на мотор).

Кроме того, выходные данные, сгенерированные функциями безопасности (активация реле по умолчанию, логическая команда реле тормоза, коды ошибок или информация на дисплее и т.п.), не считаются связанными с безопасностью данными.

Защищенная изоляция кабеля

Функция безопасности STO активируется через 2 резервных входа. Эти две цепи должны быть проложены соответствующим образом для защиты изоляции кабеля.

Если возможны короткие замыкания и перекрестные прокладки с сигналами, связанными с безопасностью, и если они не обнаруживаются вышестоящими устройствами, требуется установка защищенного кабеля в соответствии с ISO 13849-2.

При использования незащищенного кабеля для двух сигналов (двух каналов) функции безопасности, они могут быть подключены к внешнему напряжению при повреждении кабеля в результате короткого замыкания. В этом случае функция безопасности перестает работать.

Подключайте оба входа STO только с помощью экранированных свитых кабелей с шагом 25 … 50 мм (1 дюйм и 2 дюйма), соединяя экран с землей на каждом конце экранов сигнальных линий нескольких кабелей.

Контуры заземления могут вызвать проблемы в двигателях. В этом случае экран должен быть заземлен только на стороне привода.

Безопасность процесса, связанная с подключением одного или нескольких электродвигателей

Схема подключения одного или нескольких двигателей

Эти схемы подключения применимы для конфигурации с одним или несколькими приводами в соответствии с возможностями SIL3 МЭК 61508 , МЭК 60204-1, категория останова 0 без защиты от перебоев питания или снижения напряжения и последующего вращения.

Схема использования функции Safe Torque Off (STO) в частотнике VF-AS3 Toshiba при подключении одного двигателя
Схема использования функции Safe Torque Off (STO) в ПЧ VF-AS3 Toshiba при подключении одного двигателя

На схемах показано, что могут использоваться сетевые дроссели (входные фильтры)

Схема использования функции Safe Torque Off (STO) в частотнике VF-AS3 Toshiba при подключении нескольких двигателей
Схема использования функции Safe Torque Off (STO) в ПЧ VF-AS3 Toshiba при подключении нескольких двигателей

Безопасность процесса, связанная с подключением одного или нескольких электродвигателей и использованием модуля безопасности Preventa XPS-AF

Схема подключения одного или нескольких двигателей

Эти схемы подключения применимы для конфигурации с одним или несколькими приводами и с модулем безопасности Preventa XPS-AF в соответствии с ISO 13849-1, категория 3 PLe, МЭК 62061 и 60204-1, категория останова 0.

Схема использования функции Safe Torque Off (STO) в частотнике VF-AS3 Toshiba при подключении одного двигателя и использовании модуля Preventa XPS-AF
Схема использования функции Safe Torque Off (STO) в ПЧ VF-AS3 Toshiba при подключении одного двигателя и использовании модуля Preventa XPS-AF

На схемах показано, что могут использоваться сетевые дроссели (входные фильтры)

Схема использования функции Safe Torque Off (STO) в частотнике VF-AS3 Toshiba при подключении нескольких двигателей и использовании модуля Preventa XPS-AF
Схема использования функции Safe Torque Off (STO) в ПЧ VF-AS3 Toshiba при подключении нескольких двигателей и использовании модуля Preventa XPS-AF

Безопасность процесса, связанная с подключением одного электродвигателя и использованием модуля безопасности Preventa XPS-AV

Схема подключения одного двигателя

Эта схема подключения применима для конфигурации одного привода с модулем безопасности Preventa XPS AV в соответствии с ISO 13849-1, категория 3 PLe и МЭК 60204-1, категория останова 1.

Схема использования функции Safe Torque Off (STO) в частотнике VF-AS3 Toshiba при подключении одного двигателя и использовании модуля Preventa XPS-AV
Схема использования функции Safe Torque Off (STO) в ПЧ VF-AS3 Toshiba при подключении одного двигателя и использовании модуля Preventa XPS-AV

ПРИМЕЧАНИЕ. Эта схема представляет собой конфигурацию проводки с использованием входа DI1, назначенного для работы в прямом направлении.

На схеме показано, что могут использоваться сетевые дроссели (входные фильтры)

Опциональные функции безопасности SS1 (Safe Stop 1), SOS (Safe Operating Stop), SS2 (Safe Stop 2), SBS (Safe Brake Control), SLS (Safely-Limited Speed), SDI (Safe Direction)

Функция Safe Stop 1 (SS1) в частотнике VF-AS3 Toshiba
Функция Safe Stop 1 (SS1) в частотнике VF-AS3 Toshiba

Функция SS1 заставляет двигатель быстро и безопасно останавливаться и отключаться, чтобы он совсем не вращался после перехода в состояние покоя. Затем активируется функция STO.

Функция Safe Stop 2 (SS2) в частотнике VF-AS3 Toshiba
Функция Safe Stop 2 (SS2) в частотнике VF-AS3 Toshiba

Функция SS2 быстро и безопасно отключает двигатель, а затем активирует функцию SOS после остановки.

Функция Safe Operating Stop (SOS) в частотнике VF-AS3 Toshiba
Функция Safe Operating Stop (SOS) в частотнике VF-AS3 Toshiba

С помощью функции SOS остановленный двигатель приводится в рабочее положение и контролируется системой управления движением.

Функция Safely-Limited Speed (SLS) в частотнике VF-AS3 Toshiba
Функция Safely-Limited Speed (SLS) в частотнике VF-AS3 Toshiba

Функция SLS гарантирует, что привод не превысит определенный предел скорости.

Функция Safe Direction (SDI) в частотнике VF-AS3 Toshiba
Функция Safe Direction (SDI) в частотнике VF-AS3 Toshiba

Функция SDI гарантирует, что привод может вращаться только в выбранном направлении.

Функция Safe Brake Control (SBC) в частотнике VF-AS3 Toshiba
Функция Safe Brake Control (SBC) в частотнике VF-AS3 Toshiba

Функция SBC позволяет безопасно управлять удерживающим тормозом. Функция SBC всегда активируется параллельно с STO.

Преимущества технологии комплексной безопасности

Интеграция технологий безопасности в стандартные концепции автоматизации влечет за собой значительные и устойчивые преимущества для пользователей в целях повышения конкурентоспособности. Производители машин получают выгоду от сокращения аппаратного обеспечения и значительного упрощения проектирования. Результат: значительно более быстрая реализация машин и систем, а также более простая адаптация к новым требованиям

Преимущества для системных операторов: снабжение безопасными и более производительными машинами и системами. Единая интегрированная система технологий безопасности и стандартной автоматизации сокращает время простоя благодаря улучшенной диагностике, а также повышает доступность системы.

Упрощение модификации и модернизации: благодаря гибкому модульному расширению концепции, машины и системы могут быть модернизированы до более передовых технологий.

Дополнительный модуль безопасности в частотнике VF-AS3 Toshiba
Дополнительный модуль безопасности в частотнике VF-AS3 Toshiba

Как установить модуль безопасности в частотный преобразователь AS3 Toshiba

Установка опционального модуля безопасности в частотник VF-AS3 Toshiba
Установка опционального модуля безопасности в частотник VF-AS3 Toshiba

Профилактическое обслуживание

Рекомендуется каждый год проверять функции безопасности

Например, так: откройте защитную дверцу, чтобы проверить, останавливается ли привод в соответствии с настроенной функцией безопасности.

Замена оборудования машины

Примечание. Если вам необходимо заменить какую-либо часть системы, подключенную к частотному преобразователю VF-AS3 (двигатель, аварийный останов и т.д.), необходимо повторить приемочный тест.

Компания СПИК СЗМА как единственный официальный дилер Toshiba предлагает купить для решения ваших задач частотники серии VF-AS3. Вы получаете максимально качественную техническую поддержку и гарантию долгой работы преобразователя частоты.


Обучение функциональной безопасности

Вы можете пройти обучение по безопасности технологических процессов и производств в Учебном центре нашей компании. По результатам обучения выдается удостоверение о повышении квалификации.

12.04.2019

Последовательная диагностика частотного преобразователя Altivar

Сервисный центр СПИК СЗМА выполняет работы по диагностике низковольтных и высоковольтных преобразователей частоты и ремонту Altivar компании Schneider Electric. Кроме этого возможны работы по пуско-наладке ПЧ на объекте.

Сервисное обслуживание преобразователя частоты Altivar Schneider Electric
Сервисное обслуживание преобразователя частоты Altivar Schneider Electric

Сервисное обслуживание ПЧ Toshiba / Schneider Electric
Ремонт
Altivar Schneider Electric
Диагностика ПЧ Altivar Schneider Electric
Диагностика Altivar Schneider Electric
Ремонт Altivar Schneider Electric
Диагностика преобразователя частоты Altivar Schneider Electric

В процессе сервисного обслуживания проверяется исправность электрического оборудования ПЧ и работа его программной части. В случае обнаружения проблем производится замена отдельного компонента или целого блока, например, печатной платы или пульта управления.

Основные этапы сервисного обслуживания

  • очистка от скопившейся пыли ребер воздушного радиатора охлаждения IGBT транзисторов и диодных модулей
  • проверка работы вентиляторов охлаждения и их замена при наличии недопустимой вибрации при вращении крыльчатки
  • замена теплопроводящей пасты под силовыми приборами ввиду нарушения равномерности ее распределения под полупроводниковыми приборами в процессе термоциклирования преобразователя частоты
  • проверки моментов затяжки болтовых соединений силовых транзисторов и диодных модулей.
  • проверки журнала предупреждений и аварийных отключений ПЧ
  • проверка значения эквивалентного последовательного сопротивления ESR конденсаторов звена постоянного тока DC на соответствие табличным данным производителя.
  • тренировка конденсаторов звена постоянного тока при потере рабочих характеристик конденсаторов
  • замена выходных реле при обнаружении недостаточно хорошего качества контактного соединения при замыкании

Проведенное сервисное обслуживание привода Schneider Electric позволяет значительно продлить срок его эксплуатации. Рекомендуемый срок проверки и тренировки конденсаторов любого привода — каждые 7 лет с момента его выпуска с завода.

12.04.2019

Процесс разборки ПЧ и последовательной диагностики

Инженеры компании СПИК СЗМА по просьбе заказчика выполнили работы по диагностике преобразователя частоты TOSHIBA VF PS1 мощностью 37 кВт и провели его контрольное техническое обслуживание. Для этого пришлось разобрать весь привод для проверки состояния внутренних компонентов.

Сервисное обслуживание частотного преобразователя Toshiba PS1 37 кВт
Сервисное обслуживание частотного преобразователя Toshiba PS1 37 кВт

Сервисное обслуживание ПЧ Toshiba / Schneider Electric
Сервисное обслуживание преобразователя частоты Toshiba

В процессе сервисного обслуживания выявлена полная исправность оборудования ПЧ и работы его программной части. При этом были очищены от скопившейся пыли ребра воздушного охладителя (радиатора охлаждения) IGBT транзисторов. Затем была выполнена проверка моментов затяжки болтовых соединений транзисторов, что является критически важным моментом долговременной работы ПЧ.

Выполнена проверка значения эквивалентного последовательного сопротивления ESR конденсаторов звена постоянного тока DC на соответствие табличным данным производителя.

Проведенное сервисное обслуживание привода Toshiba позволяет значительно продлить срок его эксплуатации. Рекомендуемый срок проверки и тренировки конденсаторов любого привода — каждые 7 лет с момента его выпуска с завода.

Работы сервисного центра

Компания СПИК СЗМА является единственным сертифицированным сервисным центром Toshiba International Corporation на территории России и СНГ. На складе постоянно поддерживаются наиболее востребованные комплектующие преобразователей частоты Toshiba.

Наш сервисный центр выполняет работы как по низковольтным, так и по высоковольтным преобразователям частоты компании Toshiba и TMEIC. Кроме этого, Компания оказывает услуги по ремонту частотников Schneider Electric, которые изготавливаются на одном заводе с ПЧ Toshiba и имеют одинаковую конструкцию и электронные компоненты.

29.03.2019

Процесс диагностики и ремонта

Инженеры службы сервиса провели ремонтные работы частотного преобразователя TOSHIBA VF PS1 мощностью 37 кВт.

Замена неисправного блока управления ПЧ Toshiba PS1
Замена неисправного блока управления ПЧ Toshiba PS1
Неисправный блок управления ПЧ Toshiba PS1
Неисправный блок управления ПЧ Toshiba PS1

В процессе диагностики выявилась неисправность платы управления, которая располагается с обратной стороны модуля пульта управления. Со склада нашей Компании был получен и установлен новый модуль с исправной платой управления.

Работы сервисного центра

Компания СПИК СЗМА является единственным сертифицированным сервисным центром Toshiba International Corporation на территории России и СНГ. На складе постоянно поддерживаются наиболее востребованные комплектующие преобразователей частоты Toshiba.

Наш сервисный центр выполняет работы как по низковольтным, так и по высоковольтным преобразователям частоты компании Toshiba и TMEIC. Кроме этого, Компания оказывает услуги по ремонту частотников Schneider Electric, которые изготавливаются на одном заводе с ПЧ Toshiba и имеют одинаковую конструкцию и электронные компоненты.

28.03.2019

Применение распределительных электрощитов с высокой степенью защиты

Электрическое оборудование наружной установки обычно подразумевает применение защитных оболочек со степенью защиты
IP54 (защита от брызг) или IP55 (защита от слабых струй воды). В редких случаях требуется защита IP56 (защита от сильных струй воды) или IP65 / IP66 (защита от пыли и струй воды одновременно). Такое оборудование устанавливается для функционирования в составе насосных станций по подъему и перекачке воды или других жидких продуктов. Нередко требуется защита для шкафа с электрооборудованием установки АВО газа на компрессорных станциях. Даже простые распределительные щиты для обогрева труб греющими кабелями дешевле располагать рядом с трубой.

Многие заказчики предпочитают использование помещений или блочных контейнеров (блок-боксов) для защиты электротехнического оборудования. Но стоимость такого решения в несколько раз выше стоимости электрощитов, специально выполненных для установки на открытом воздухе. Стоимость работ по построению сооружения всегда будет больше, чем изготовление тонкостенного корпуса электрощита в производственных условиях. Любое дистанцирование распредустройства от объекта будет неблагоприятно влиять на цену проекта.

Подключение шкафа управления IP54 на испытательном участке сборочного производства

Электрощит распределительный с автономным климат-контролем в процессе сборки

Все дело в покрытии

Компания СПИК СЗМА при изготовлении корпусов электрощитов наружной установки использует специальное покрытие, не разрушающееся при температурах ниже -40 °С. Как показали наши исследования (испытания в климатической установке), обычное покрытие порошковой краской с предварительным фосфатированием по металлу не гарантирует качественную адгезию краски для таких температур.

Поэтому корпуса шкафов для электрооборудования покрываются порошковой краской по специальной технологии. Любое нарушение покрытия приведет к коррозии оболочки щита и протечкам воды. Это обычно влечет за собой короткие замыкания, пожары и повреждение электрооборудования. Наше покрытие гарантирует длительную эксплуатацию электротехники в суровых условиях эксплуатации.

Пример некачественного покрытия
Пример некачественного покрытия (трещина и отслоение) после длительных испытаний при температуре -60 °С.

Как показывает опыт, даже законсервированное оборудование, хранящееся на складе заказчика длительный период, вводится в эксплуатацию без каких-либо проблем.

Разработка всепогодного электрооборудования

Обычно, кроме защиты от воздействия пыли, дождя или снега, требуется защита от повышенных и пониженных температур окружающей среды. Компания СПИК СЗМА производит станции управления и распределительные электрощиты наружного исполнения с расширенным температурным диапазоном эксплуатации от -60 °С до +50 °С. При необходимости в конструкции предусматривается система внутреннего обогрева (при отрицательных температурах) и вентиляции (при температурах свыше +40 °С).

Керамический нагреватель внутреннего пространства электрощита
Керамический нагреватель внутреннего пространства электрощита
Защищенная система вентиляции электротехнического шкафа
Защищенная система вентиляции электротехнического шкафа

Инженеры Компании СПИК СЗМА рассчитают необходимую мощность обогрева корпуса электрощита, выберут требуемый объем вентиляции для охлаждения. За работу процессов нагрева и охлаждения отвечает универсальная автоматическая система с заданными порогами срабатывания.

В свою продукцию мы устанавливаем вентиляторы высокого качества (EBM PAPST, Иолла), гарантирующие длительную эксплуатацию наших изделий. Это критически важно для электроустановок со степенью защиты IP54 / IP55. которые часто работают под открытым небом, на значительном удалении от обслуживающего персонала.

Узнать подробнее о нашем сборочном производстве.

Контакты

Россия, 195030, Санкт-Петербург, ул. Химиков, д. 26
+7 (812) 647-03-97; +7 (812) 647-03-87 доб. 103

26.03.2019
АСУ ТП



Производство автоматизированных систем управления технологическими процессами

Основной профиль работы Компании. Проектирование и производство АСУ ТП выполняется командой специалистов с многолетним опытом работы. Управление процессами вакуумной дистилляции мазута, гидрокрекинга и каталитического крекинга газойля реализуются с помощью контроллеров Siemens с распределенной архитектурой функционирования. Для процессов гидроочистки, глубокой переработки нефти и налива топлива внедряются компоненты противоаварийной защиты.

При сборке АСУ ТП используются только проверенные временем решения и комплектующие таких компаний как Siemens, Honeywell, Phoenix Contact, Emerson, Toshiba.

Перечень выполненных работ свидетельствует о большой компетенции компании СПИК СЗМА в вопросах поставки сложных систем управления АСУ ТП для опасных производственных объектов.


АСУ ТП



Производство автоматизированных систем управления технологическими процессами

Основной профиль работы Компании. Проектирование и производство АСУ ТП выполняется командой специалистов с многолетним опытом работы. Управление процессами вакуумной дистилляции мазута, гидрокрекинга и каталитического крекинга газойля реализуются с помощью контроллеров Siemens с распределенной архитектурой функционирования. Для процессов гидроочистки, глубокой переработки нефти и налива топлива внедряются компоненты противоаварийной защиты.

При сборке АСУ ТП используются только проверенные временем решения и комплектующие таких компаний как Siemens, Honeywell, Phoenix Contact, Emerson, Toshiba.

Перечень выполненных работ свидетельствует о большой компетенции компании СПИК СЗМА в вопросах поставки сложных систем управления АСУ ТП для опасных производственных объектов.


Системы управления



Производство станций управления

На первом этаже производственного комплекса осуществляется серийная сборка станций управления погружными насосами и горизонтальными насосами (ГНС). Примерный состав электротехнического оборудования станций:

  • контроллер управления с высокой степенью защиты и встроенным подогревом
  • силовой инвертор и выпрямитель частотного преобразователя
  • входной защитный автоматический выключатель
  • главный контактор для управляемой защиты силовых цепей
  • вспомогательные цепи заряда и разряда конденсаторов звена постоянного тока частотного преобразователя
  • выходной синусный фильтр
  • аппаратура подогрева и охлаждения станции управления

Металлические корпуса станций управления спроектированы с учетом установки на открытом воздухе и оптимизированы по высоте. Это необходимо для транспортировки и осуществления погрузочно-разгрузочных работ на месторождениях с ограниченными техническими возможностями.

Системы управления



Производство станций управления

На первом этаже производственного комплекса осуществляется серийная сборка станций управления погружными насосами и горизонтальными насосами (ГНС). Примерный состав электротехнического оборудования станций:

  • контроллер управления с высокой степенью защиты и встроенным подогревом
  • силовой инвертор и выпрямитель частотного преобразователя
  • входной защитный автоматический выключатель
  • главный контактор для управляемой защиты силовых цепей
  • вспомогательные цепи заряда и разряда конденсаторов звена постоянного тока частотного преобразователя
  • выходной синусный фильтр
  • аппаратура подогрева и охлаждения станции управления

Металлические корпуса станций управления спроектированы с учетом установки на открытом воздухе и оптимизированы по высоте. Это необходимо для транспортировки и осуществления погрузочно-разгрузочных работ на месторождениях с ограниченными техническими возможностями.

Эл. щиты



Сборка электрощитовой продукции

Производство электротехнических изделий, предназначенных для распределения электроэнергии, защиты потребителей и преобразования уровней напряжения питающей сети с помощью преобразователей частоты, является одним из основных видов деятельности компании.

Этапы сборки и наладки электрощитов:

  • снятие монтажной панели и двери для просверливания установочных отверстий под оборудование
  • установка монтажных аксессуаров для оборудования и кабельных коробов для электрических трасс
  • монтаж аппаратуры и трассировка электрических соединений между приборами
  • проверка соединений и моментов затяжки крепежных соединений
  • отладка программного обеспечения
  • тестирование работы электрощита на испытательном стенде

 

Эл. щиты



Сборка электрощитовой продукции

Производство электротехнических изделий, предназначенных для распределения электроэнергии, защиты потребителей и преобразования уровней напряжения питающей сети с помощью преобразователей частоты, является одним из основных видов деятельности компании.

Этапы сборки и наладки электрощитов:

  • снятие монтажной панели и двери для просверливания установочных отверстий под оборудование
  • установка монтажных аксессуаров для оборудования и кабельных коробов для электрических трасс
  • монтаж аппаратуры и трассировка электрических соединений между приборами
  • проверка соединений и моментов затяжки крепежных соединений
  • отладка программного обеспечения
  • тестирование работы электрощита на испытательном стенде

Эл. устройства



Изготовление электронных устройств на печатных платах

Компания СПИК СЗМА занимается профессиональным изготовлением электронного оборудования на печатных платах.

В процессе производства применяются современные флюсы и припои. При необходимости осуществляется промывка платы для удаления кислотосодержащих компонентов флюса. В последствии на печатную плату наносится лаковое покрытие для защиты от внешних неблагоприятных факторов (работа в условиях высокой влажности или высокой концентрации химически активных веществ).

Инженеры электротехнического производства выполняют предварительные работы по проверке трассировки соединений и комплектации заказа электронного модуля.

Эл. устройства



Изготовление электронных устройств на печатных платах

Компания СПИК СЗМА занимается профессиональным изготовлением электронного оборудования на печатных платах.

В процессе производства применяются современные флюсы и припои. При необходимости осуществляется промывка платы для удаления кислотосодержащих компонентов флюса. В последствии на печатную плату наносится лаковое покрытие для защиты от внешних неблагоприятных факторов (работа в условиях высокой влажности или высокой концентрации химически активных веществ).

Инженеры электротехнического производства выполняют предварительные работы по проверке трассировки соединений и комплектации заказа электронного модуля.

Наша компания занимается изготовлением шкафов автоматики, в том числе шкафов управления наружной установки со степенью защиты IP54 / IP55 / IP56.

Контакты

Россия, 195030, Санкт-Петербург, ул. Коммуны, 87, литера А

+7 (812) 647-03-97; +7 (812) 647-03-87 доб. 103

15.03.2019

Высоковольтные преобразователи частоты серии T300MVi и MTX компании TOSHIBA

Ремонт или обслуживание ВПЧ компании TOSHIBA чаще всего заключается в замене охлаждающих вентиляторов и конденсаторов звена постоянного тока. В некоторых случаях возникает необходимость замены IGBT транзисторов и платы управления инвертором.

Выкатная ячейка преобразователя частоты T300MVi
Выкатная ячейка преобразователя частоты T300MVi

Качественный ремонт ВПЧ требует наличия специального оборудования и опытных сертифицированных мастеров. Ввиду больших размеров высоковольтных преобразователей частоты, не всегда имеется возможность доставить преобразователь в сервисный центр. В этих случаях специалисты СПИК СЗМА оперативно выезжают на объект заказчика в любой регион России.

Преобразователь частоты среднего напряжения T300MVi
Преобразователь частоты среднего напряжения T300MVi

В нашей сервисной лаборатории имеются тестовые стенды для проверки плат управления и выкатных ячеек высоковольтного частотного преобразователя.

Платы управления преобразователя частоты T300MVi
Платы управления преобразователя частоты T300MVi

Своевременное техническое обслуживание частотного преобразователя позволяет избежать аварийных ситуаций, таких как: взрыв конденсаторов, транзисторов, отказ плат управления. ТО рекомендуется проводить через 7 лет функционирования преобразователя. В техническое обслуживание входит проверка вентиляторов, тестирование конденсаторов звена постоянного тока, чистка от пыли, осмотр печатных плат на предмет окисления проводников.

Взрыв конденсатора в T300MVi вследствии непроведенного вовремя технического обслуживания
Взрыв конденсатора в T300MVi вследствие непроведенного вовремя технического обслуживания. Ремонт ПЧ после взрыва сложен и всегда несоизмеримо дороже стоимости диагностики и обслуживания.

Высоковольтные преобразователи частоты серии TMdrive-XL, TMdrive-70e2, TMdrive-MVG2, TMdrive-MVe2 компании TMEIC

TMEIC – совместное производство компаний TOSHIBA и Mitsubishi Electric. Традиционное японское качество обеспечило хорошую надежность их совместного продукта TMdrive. Компания СПИК СЗМА является авторизованным партнером TMEIC по поставкам и сервисному обслуживанию частотных преобразователей TMdrive.

Выкатная ячейка высоковольтного преобразователя частоты MVe2
Выкатная ячейка высоковольтного преобразователя частоты MVe2

Для того, чтобы не доводить до ремонта преобразователь частоты MVG2 или MVe2, следует проводить периодическое обслуживание ПЧ. На изображении ниже показано состояние частотного преобразователя MVe2, который не проходил периодического ТО. Пожар, возникший от повреждения конденсаторов привел к потере значительной части дорогостоящего оборудования.

Преобразователь частоты среднего напряжения MVe2
Преобразователь частоты среднего напряжения MVe2 после пожара.

Официальный сервисный центр TOSHIBA-TMEIC производит диагностику и ремонт частотных преобразователей TOSHIBA-TMEIC. Сервис осуществляется для следующих типов преобразователей: T300MVi (до 4160 В), MTX (до 4160 В), TMdrive-XL, TMdrive-70e2, TMdrive-MVG2, TMdrive-MVe2.

15.03.2019

Инженеры службы сервиса СПИК СЗМА произвели диагностику и ремонт преобразователя частоты VF NC3-2002PL TOSHIBA (мощность 200 Вт).

Ремонт преобразователя частоты VF NC3
Отображение кода аварии на экране преобразователя частоты VF NC3

Проведенная диагностика преобразователя частоты установила:

  • следы вытекшего электролита на дне шкафа управления конвейером
  • потерю нескольких крепежных винтов для подключения силовых кабелей
  • повреждение конденсатора звена постоянного тока

Причиной вышеуказанных дефектов явился перегрев преобразователя частоты.

В результате замены конденсатора звена постоянного тока была восстановлена работоспособность преобразователя частоты VF NC3 TOSHIBA. Взамен утерянных крепежных винтов были подобраны и установлены на штатные места подходящие винты с дюймовой резьбой. Также было произведено тестирование частотника и восстановлены исходные настройки ПЧ после тестирования.


СПИК СЗМА является единственным сертифицированным сервисным центром TOSHIBA на территории России и СНГ. Компания  осуществляет диагностику, настройку и ремонт преобразователей частоты TOSHIBA. Сервисный центр расположен в Санкт-Петербурге по адресу ул. Химиков, 26.