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Abstract: The article deals with reliability assessment methods for systems with three-
state elements. It is shown that further development of conventional logic-and-probabilistic
methods (LPM) eliminates the LPM deficiencies such as analysis of only two element states and
assumption of their independency. Two models of element failure impact on the system reliability
are shown which demonstrate the principles of reliability assessment using the ARBITR software
which incorporates capabilities of algebra of disjoint event groups and is based on the general

logic-and-probabilistic method (GLPM).
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1. INTRODUCTION

Reliability assessment for complex systems with elements
which have more than two states is of significant inter-
est. Despite many methods available for formalization of
a mathematical model of such system functioning, the
method based on algebra of disjoint event groups is a
precise, rigorous method which is quite easy to deploy
in the software. A distinguishing feature of reliability as-
sessment for three-state element systems is application
of so called schemes of functional integrity (SFI) which
ensure system reliability modeling with consideration of
fail-open and fail-closed modes. The method used for the
system reliability analysis depends on the applied model
of element failure impact on the system reliability.

2. MODEL 1
2.1 General Description

Dhillon and Singh [Dhillon et al. (1981)] suggest the
following model of element failure impact on the system:

(1) For series connection:

e Open-failure of at least one element results in
failure of the whole system;

e Closed-failure of all elements results in failure of
the whole system;

o (Closed-failure of a few elements with at least one
working element does not result in the system
failure.

(2) For parallel connection

e Closed-failure of at least one element results in

failure of the whole system.

A general formula for system reliability was defined based
on the analysis of failure-free operation of series and
parallel systems. The function of system reliability consists
of parallel minimum paths, and every single minimum path
is a series connection of elements. Thus, this formula may
be applied for any monotonous structure (series, parallel,
bridge, etc.) with this model of element failure impact on
the whole system.

For example, the expression for reliability of a bridge
structure Rb with consideration of element open-failure
and closed-failure modes, takes the form [(Dhillon et al.,
1981, p.170)]:

2
szl—ZQOKzl—Qm—Qoz, (1)

k=1

where Qq1, Qo2 — probabilities of the system open-failure
(k=1) and closed-failure (k=2). Probabilities Qo1 and Qo2
are calculated by substituting elements open-failure (g,;)
and closed-failure (gs;) probabilities in the expression of
the system reliability.

2.2 ARBITR Application For Task Decision

Reliability assessment of three-state element systems takes
account of mutually exclusive elements failed-open and
failed-closed events [(Dhillon et al., 1981, p.165)]. Thus
we can rewrite the equation (1) as follows:

Ry =Rco — Qes =1—(Qco — Qes), (2)

Right part of the equation (2) corresponds to probability of
the event which L-function is a conjunction of negation of
two disjoint events [(Chercesov et al., 1991, p.51)]. Events
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are system failures due to ”open” or ”closed” states.
This property of the group of disjoint events is shown in
Appendix A.

To solve this task in ARBITR software, an algebra of
groups of disjoint events offered by the general logic-and-
probabilistic method (author — A.Mozhaev) is applied
which may used for both individual events and events uni-
fied in equivalent schemes [Polenin et al. (2011)]. Schemes
of functional integrity (SFI) are used as a graphic tool
for formalized task statement and generation of systems
of L-equations in ARBITR software. The task solution
procedure in ARBITR comprises the following steps:

(1) Generation of the equivalent SFI (for element #1) to
estimate the failed-open probability.

SFI structure is equal to the system structure.
Probabilities of element failure-free operation only
for open type failures are used as initial data, i.e.
pi=1-—4q.

(2) Generation of the equivalent SFI (for element #2) to
estimate the failed-closed probability.

SFI structure is equal to the system structure.
Probabilities of element closed failures (gs;) are used
as initial data.

(3) Equivalent SFIs are combined as conjunction of nega-
tion of two disjoint events.

Fig. 1-3 show sample ARBITR screenshots for computing
probability of the bridge structure failure for a system with
three-state elements. The sequence of operations following
the above said methodology is shown. Initial data for
quantitative evaluation of probability of the system failure-
free operation are similar to initial data shown in [Dhillon
et al. (1981)], i.e. probabilities of open failure and closed
failure are 0.2 and 0.1 correspondingly.

& Equivalent SFI for element #1 P

‘ !5 ctieme 1 Pi
‘ 1 0.8
‘ 2 o
3 0.8
4 0.8
5 0.8
I Criteria y% -
Fig. 1. Bridge structure. First step
@ Ecuivalent SFI for element #2 =08 iy
Scheme 2 Pi
1 0.1
2 0.1
3 0.1
4 0.1
s 0.1
Criteria 6 -

Fig. 2. Bridge structure. Second step

The results of probability evaluation for failure-free opera-
tion of the bridge structure Rb = 0.88984 meet the results
shown in [Ryabinin (2007)].

Criteria
y3
i - »
= Group 1 (disjoinf)
1 0.08864
2 0.02152
Scheme 1
1 0.8
2 0.8
3 0.8
% 4 0.8
S 0.8
Scheme 2
1 0.1
e 2 0.1
3 0.1
B 0.1
S 0.1

Fig. 3. Bridge structure. Thrid step
3. MODEL 2

3.1 General Description

The Professor Igor Ryabinin, while summarizing the anal-
ysis of LPM capabilities for three-state elements reliability
analysis fairly noticed that ”...there are particularly no
actual systems with all elements having three states mode”
[(Ryabinin, 2007, p.193)].

Therefore, let us consider an example of the power system
comprising two generators (G1 and G2) and two power
transmission lines (PTL3 and PTL4) [(Chercesov et al.,
1991, p.47)]. They ensure redundancy of the main load
power supply. Both generators may be either in operable
(state X; and X3) or in operable (X; and X5) state. PTL3
and PTL4 are three-state elements: operable (X3 and X4)
and inoperable. PTL failures may be either open failure
(for PTL3 - X5, for PTL4 - X§) or closed failure (for PTL3
- X7, for PTL4 - Xg). If at least one PTL is in fail-closed
mode, the whole system fails.

3.2 ARBITR Application For Task Decision

SFT is generated to evaluate reliability of the power system
in ARBITR software (Fig. 4).

Fig. 4. SFI of the power system
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The system of logical equations comprises logic variables
z; and Z;, ¢ = 1,8, which show (non)occurrence of the
event 4 (transmission in 4 state), and it is written as a
normal disjunctive form:

T1T3T4T7T8 V ToX4TgT7 Ty (3)

While decision making, it should be noted that all three
states of PTL3 and PTL4 (states X3, X5, X7 and X4,
X, Xg) represent complete groups of disjoint events and
probability of each group is 1.

If we apply the Sylvester-Poincare formula to (3), we get
the following probabilistic function to evaluate reliability
of the power system:

R. = PIP3Q5Q7Qs + PoP4QsQ7Qs —
—Pi PPy PQsQeQ7Qs, (4)

where R, is reliability of the system:;
P; probability of i-th event occurrence;
Qi=1-F.

Pursuant to the rule of computing probabilities for a prod-
uct of two or more disjoint events - the rule of conjunction
contraction [Appendix A] for groups of disjoint events
(states X3, X5, X7 and X4, Xg, Xg), we get:

P3Q5Q7 = Ps3, PAQsQs = Fy. (5)

Thus, (4) with consideration of transformations (5) will be
as follows:

R. = PiP3Qg + P2 PyQ7 — PLP P3Py (6)

For quantitative evaluation of system reliability, the fol-
lowing initial data are used [Chercesov et al. (1991)]:
P =06;P,=04; P3=0.5; P, =0.7; P, =0.2; Pg = 0.2;
P5= 1—P3—P7:0.3; PG = 1—P4—P8=O.1. Therefore
pursuant to (6), reliability of the power system with con-
sideration of groups of disjoint events will be Rc =0.38.
Reliability of the system without consideration of groups
of disjoint events pursuant to (4) will be R. = 0.2618112.
Comparison of quantitative estimates of the power system
reliability for this model of element failure impact on the
overall system failure shows that consideration of mutu-
ally exclusive of fail-open and fail-closed modes results in
reduction of the system reliability.

4. CONCLUSION

Conventional logic-and-probabilistic methods are used as
a basis for development of methods of reliability evaluation
for systems with three-state elements. The apparatus
of groups of disjoint events deployed in the ARBITR
software, is used as a theoretical basis for this methodology
[Chercesov et al. (1991), Nozik (2005), Polenin et al.
(2011)]. It is shown that the general logic-and-probabilistic
approach may be used for the tasks when the elements
have more than two states, and changes of element states
represent, stochastically dependent events.
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Appendix A. TRANSFORMATION OF LOGIC AND
PROBABILISTIC FUNCTIONS

The Appendix shows substantiation and several evidences
of transformation of logic functions (L-functions) and
probabilistic functions (P-functions). To find substantia-
tion and evidence of all 24 transformations of L-functions

and P-functions, please visit http://www.szma.com/pub.shtml.

A.1 Conjunctions on disjoint events

Transformations for this group of conjunctions are shown
in lines 1.1, 2.2, and 3.4 of consolidated tables B.1 - B.3.
Evidence of consistency of a transformation is given for
mutually exclusive direct events a and b. Table A.1 shows
a truth table and an L-function transformation for the said
group of disjoint events.

Table A.1. Truth table for conjunction a A b

a | b | ab Tr TLF
00| O 0
0|1 0 0
1(0/| 0 0
1|1 1 1=0 0

Column ab of the table A.1 shows results of conjunction
without consideration of mutually exclusive of events a
and b. If we replace 71”7 onto ”0” in the last line of
this column which corresponds to disjoint direct events
(Tr column which stands for transmission), then in the
last column ”TLF” (transformed L-function), the logic
function with consideration of the group of disjoint events
will be equal to logic ”0”. This transformation is explained
by the definition of mutual exclusivity of a and b events.
Therefore, logic transformation for this conjunction may
be expressed as follows:

aNb=0, (A.1)

and the probabilistic transformation will be as follows:
P(ab) = 0. (A.2)

A.2 Conjunction contraction

Transformations for this conjunction group are shown in
lines 1.2, 1.3, 2.1, 2.4, 3.2, and 3.3 of tables B.1 - B.3.
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Explanation of accuracy of this transformation is shown
for mutually exclusive direct events a and b with regard to
conjunctions of events @ and b.

Events a and b are not disjoint events, but to evaluate the
probability P(ab) of their product, it is necessary to take
in account mutually exclusive of their direct outcomes.

Venn diagram for this case is shown in fig. A.1. As it is
shown in fig. A.1, a set (event) b is an intersection of sets
(events) aNbd.

0000
00
w

a b

/

_

Fig. A.1. Venn diagram. Intersection of events a Nb = b
(disjoint direct events)

Thus, taking in consideration the mutually exclusive of
direct events, L-function of the conjunction is transformed
as follows:

anb=Db, (A.3)
which corresponds to P-function transformation:
P(ab) = P(b). (A4)

Table A.2 shows a truth table and a transformation of
L-function for the considered group of disjoint events.

Table A.2. Truth table for conjunction a A b

a|b|al| ab Tr TLF
0]0]1 0 0
0O]1]1 1 1
110]0 0 0
111]0 0 0=1 1

Column ”Tr” of the Table A.2, as well as in Table A.1
shows transformation of the events product mentioned
in the last line, which meets the condition of mutually
exclusive direct events. With consideration of this mu-
tually exclusive, the L-function shown in column ”TLEF”
coincides with L-function of the event b.

A.3 Conjunction transformation using the law of dualization

(De Morgan’s theorem)

Transformations for this conjunction group are shown in
lines 1.4, 2.3, and 3.1 of tables B.1 - B.3. Explanation
of accuracy of this transformation is shown for mutually
exclusive events a and b with regard to conjunctions of
events a and b.

With consideration of mutually exclusive events a and b,
L-function for the conjunction a A b may be written as
follows:

aNb=aVb, (A.5)
and the P-function will be as follows:
P(aAb) =1—[P(a) + P(D)]. (A.6)

Table A.3. Truth table for disjunction a V b

al|b|aVd Tr TLF
0 0 0 0
0 1 1 1=20 0
1 0 1 1
1 1 1 1

A.4 Disjunction contraction

Transformations for this disjunction group are shown in
lines 1.6, 1.7, 2.5, 2.8, 3.6, and 3.7. of tables B.1 - B.3.

Explanation of accuracy of this transformation is shown
for mutually exclusive events a and b with regard to
disjunctions of events a and b. Venn diagram for this case
is shown in fig. A.2.

)

Fig. A.2. Venn diagram. Union of events a V b

Diagrams in fig. A.2 show that with consideration of
mutually exclusive events a and b, L-function for this
disjunction may be transformed as follows:

aVb=a, (A7)

which corresponds to transformation of P-function as
follows:

P(aVb) = P(a). (A.8)
Table A.3 shows a truth table for the considered group of
disjoint events.

Table A.3 shows transformation of a product of events
specified in the second line, which meets the condition
of mutually exclusive events a and b. As it is shown
in ”TLF” column, L-function of the disjunction a V b
with consideration of mutually exclusive events a and b
coincides with LF-function of the event a.

Transformations of groups 2 and 4 are called the disjoint
absorption law.

A.5 Transformation of events disjunction into the universe

Transformations for this disjunction group are shown in
lines 1.8, 2.7, and 3.5 of tables B.1 - B.3. Explanation
of accuracy of this transformation is shown for mutually
exclusive inverse events a and b with regard to disjunction
of events a and b. Table A.4 shows a truth table for the
considered group of disjoint events. Table A.4 shows that
logic transformation for this disjunction may be written as
follows:

aVvb=1, (A.9)

and the probabilistic transformation will be as follows:
P(aVb) = (A.10)
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Table A.4. Truth table for disjunction a V b

al|b|aVvd Tr TLF
010 0 0=1 1
01 1 1
110 1 1
111 1 1

Transformation of this group of L-functions is called the
disjunctions truth law.

A.6 Disjunctions of disjoint events

Transformations for this disjunction group are shown in
lines 1.5, 2.6 and 3.8 of table B.1 - B.3. L-function is
not transformed, and P-function by definition is equal to
probability of a sum of disjoint events.

Appendix B. CONSOLIDATED TABLES OF LOGIC
AND PROBABILISTIC FUNCTION

TRANSFORMATIONS
The consolidated tables B.1 - B.3 show transformations of
L-functions and P-functions which correspond to various Table B.3. Mutually exclusive direct events a
combinations of disjoint events — both direct and in- and b
verse. Transformed L-functions (TLF) and transformed P-
functions (TPF) account for the type of mutually exclusive # I LF ITLF I PF I TPF
events shown in the title of each table. Conjunctions
Table B.1. Mutually exclusive direct events a 3.1| ab |avb| P(ab) |1—[P(a)+ PO)]
and b 32| ab | a | P(ab) P(a)
#|Lr|TLr] PR ] TPF 33 ‘_’lf b 1P (‘_ﬂf) P®)
Conjunctions 3.% 'ab - 0 P(ab) 0
11 ab ) Pab) 0 Disjunctions
121 ab b P(ab) 0 35lavb|l 1 |P(aVvbd) 1
1.3] ab | a | P(ab) P(a) 3.6 &Vlj b |P@v lj) P®)
14| ab lavo| P(ab) |1-[P(a)+ P(b)] 3Tjavb| a |PlaVb) Pla) _
Disjunctions 38lavblavb|P(avb)| P(a)+ P(b)
1.5laVblaVb|P(aVvd)| P(a)+ P(b)
1.6|avb| a |[P(@vb) P(a)
1.70aVvb| b |[P(aVb) P(b)
1.8|avb| 1 |[P(aVvb) 1

Table B.2. Mutually exclusive events a and b

#|Lr |TLr] Pr | TPF
Conjunctions

21| ab | b | P(ab) P(b)

2.2| ab 0 P(ab) 0

2.3| ab |avb| P(ab) |1—[P(@)+ P(b)]
24| ab | a | P(ab) P(a)
Disjunctions

25laVvb| a |P(aVb) P(a)
26laVvblavb|P@vb)| P(a)+ P(b)
2.7lavb| 1 |P(aVb) 1
28|laVvb| b |P(avb) P(b)
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