

СПЕЦИАЛИЗИРОВАННАЯ ИНЖИНИРИНГОВАЯ КОМПАНИЯ

УТВЕРЖДАЮ

Генеральный директор ОАО "СПИК СЗМА"

А.А.Нозик

" " 2007 г.

ОПИСАНИЕ РАСЧЕТНЫХ И АНАЛИТИЧЕСКИХ ТЕСТОВ ПРОГРАММНОГО СРЕДСТВА

Приложение 1 к заключительной редакции Отчета о верификации ПС:

"Программный комплекс автоматизированного структурно-логического моделирования и расчета надежности и безопасности систем"

(ПК АСМ СЗМА, базовая версия 1.0)

ПК АСМ СЗМА принят к аттестации 07 июня 2005 г. на заседании Секции № 5 Совета по аттестации программных средств при Ростехнадзоре РФ в Научно - техническом центре по ядерной и радиационной безопасности.

Все материалы, опубликованные в данном документе являются собственностью ОАО «СПИК СЗМА». Любое использование материалов (полное или частичное их копирование, тиражирование, перевод на другие языки, публикация где- либо, включая электронные и печатные носители информации, а также веб-сайты) без письменного разрешения ОАО «СПИК СЗМА» является нарушением Закона об авторских правах. При использовании материалов с разрешения авторов, ссылка на Отчет о верификации программного средства "ПК АСМ СЗМА, базовая версия 1.0" обязательна.

Санкт-Петербург, 2007 г.

ИСПОЛНИТЕЛИ

Ведущий специалист ОАО «СПИК СЗМА»	Можаев А.С.
Ведущий программист ОАО «СПИК СЗМА»	Киселев А.В.
Ведущий специалист ОАО «СПИК СЗМА»	Струков А.В.
Ведущий инженер ОАО «СПИК СЗМА»	Скворцов М.С.

СОДЕРЖАНИЕ

СОКРА	АЩЕНИЯ И ОБОЗНАЧЕНИЯ	5
введе	ЕНИЕ	7
Расче	гный и аналитический тест № 1. ВЕРОЯТНОСТНЫЙ АНАЛИЗ НАЛЕЖНОСТИ И	
БЕЗО	ПАСНОСТИ СТЕНЛА ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ	9
11	Описание за тачи	9
1.1.	Формание зада и) 11
1.4.	Формализованная постановка задачи в ПК АСІЛ СЭМА	14
	Пример 1.1. Гасчет вероятности оезотказного функционирования и отказа СФИ	. 17
	Пример 1.2. Гисчет вероятности возникновения проектной ивирии СФП	. 25 5И
		. 28
	Пример 1.4. Моделирование и расчет вероятности возникновения запроектной аварии СФИ	. 32
	Пример 1.5. Оценка мероприятий по снижению вероятности запроектной аварии СФИ	. 35
	Пример 1.6. Учет собственного времени работы группы элементов СФИ	. 40
	Выводы по результатам Теста №1	. 44
Расчет	гный и аналитический тест №2. МОДЕЛИРОВАНИЕ И РАСЧЕТ НАДЕЖНОСТИ	
СИСТ	ЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ	.45
2.1.	Описание задачи	.45
11	Формализованная постановка залачи в ПК АСМ СЗМА	46
1.1.	Пример 2.1. Расчет вероятности обеспечения питанием СЭС всех, трех потребителей при заданны	x
	вероятностях безотказной работы элементов, независящих от времени	. 46
	Пример 2.2. Автоматическое определение списка минимальных путей обеспечения питанием СЭС	
	одновременно всех трех потребителей	. 48
	Пример 2.3. Автоматическое определение списка минимальных сечений отказов СЭС, приводящих к	не
	обеспечению питанием хотя бы одного из трех потребителей	. 49
	Пример 2.4. Расчет надежности невосстанавливаемой СЭС с заданной средней наработкой до отко	аза
	элементов в предположении экспоненциального распределения	. 30
	Пример 2.5. Расчет восстанавливаемой СЭС с заданными средними наработками на отказ и времен	!ем 5 1
	восстановления элементов в преоположении экспоненциального распреоеления	. 31 53
	Пример 2.0. Пемонопонния модель функционирования СЭС	. 55 56
	пример 2.7.1 и счет смешитой СЭС с восстанивливиемыми и невосстанивливиемыми элементими Выводы по результатам Теста №?	57
Расче	ГНЫЙ И АНАЛИТИЧЕСКИЙ ТЕСТ №3 МОЛЕЛИРОВАНИЕ И РАСЧЕТ НАЛЕЖНОСТИ	
ΦΡΔΓ	МЕНТА ЯЛЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ	59
		.5) 50
5.1.	Описание задачи	59
3.2.	Формализованная постановка задачи в ПК АСМ СЗМА	60
	Пример 3.1. Расчет надежности ЯЭУ по заданным вероятностям безотказной работы элементов,	60
	независящим от времени	. 00
	пример 5.2.1 исчет коэффициенти готовности восстинивливиемой ЛЭУ с зиоинными среоними напаботками до отказа и временем восстановления элементов в предположении экспоненицального	
	нириоотками об откази и временем восстиновления элементов в преоположении экспоненциилоного паспределения	61
	Пример 3.3. Определение списка кратчайших путей успешного функционирования ЯЭУ	. 62
	Пример 3.4. Определение списка минимальных сечений отказов ЯЭУ	. 63
	Пример 3.5. Решение задачи вероятностного анализа ЯЭУ с помощью дерева отказов	. 63
	Выводы по результатам Теста №3	. 67
Расчет	гный и аналитический тест №4. РАСЧЕТ ВЕРОЯТНОСТЕЙ ВАРИАНТОВ СЦЕНАРИ	Rŀ
PA3B	ИТИЯ АВАРИИ, ЗАДАННОГО ДЕРЕВОМ СОБЫТИЙ	.68
	4.1. Описание задачи	. 68
	4.2. Формализованная постановка задачи в ПК АСМ СЗМА	. 68
	Пример 4.1. Расчет вероятностей отдельных вариантов развития аварии на основе СФЦ деревьев	
	событий с ГНС	. 70
	Пример 4.2. Расчет вероятностей групп возможных вариантов развития аварии, выделенных по	
	уровням последствий	. 71
	Пример 4.5. Представление дерева событий с помощью СФЦ с инверсиями	. /4
	пример 4.4. дерево сооытии аварии с пооключенными структурами различных поосистем	. /J 01
	Бавооа по результитим 1ecmu м2+	. 01

4

Расчетный и аналитический тест №5. ВЕРОЯТНОСТНЫЙ АНАЛИЗ БЕЗОПАСНОСТИ	
СИСТЕМЫ НА ОСНОВЕ ДЕРЕВА ОТКАЗОВ	82
5.1. Описание задачи	82
5.2. Формализованная постановка задачи в ПК АСМ СЗМА	83
Пример 5.1. Определение минимальных пропускных сочетаний (минимальных сечений отказов) заправочной операции	
Пример 5.2. Определение минимальных отсечных сочетаний (кратчайших путей успешного	05
функционирования)	83
Пример 5.3. Моделирование и расчет вероятности аварии системы на основе дерева отказов	
Пример 5.4. Моделирование и расчет вероятности не возникновения аварии системы на основ	e 07
дерева отказов	
Вывооы по результатам 1еста №2.	88
Расчетный и аналитический тест №6. ТИПОВЫЕ МОДЕЛИ ОТКАЗОВ ПО ОБЩЕИ ПРИЧИНЕ	89
6.1. Описание задачи	
6.2. Формализованная постановка задачи в ПК АСМ СЗМА	
Пример 6.1. Расчет надежности мостиковой системы с использованием структурного способ	я учета
модели Альфа-фактора ООП трех элементов 1 2 и 3	92
ловена плофа фиктора в от трех олежениевої, 2 а в стользованием структурного спос Пример 6.2 Расчеты надежности мостиковой системы, с использованием структурного спос	
пример 0.2. Гистепни насемености мостиковой система с исполозовинием структурного спос учета разных моделей и различных групп элементов ООП	94
Лпимер 63 Расцет надежности мостиковой системы, с использованием способа автоматии	
11ример 0.5. 1 исчет наосяхности мостиковой системы с исполозованием способа изтоматиче учета разчых моделей и разлициых групп элементов $\Omega O \Pi$	Q7
учети ризном мовенен и ризличных срупп элементов - 0011 Выгоды по результатам Теста №6	103
Вавоов по резулятитам тести № Рознати и и оно ризулятитам тести №7. ЦЕТИПОВ ИЕ МОЛЕНИ ОТИ АЗОВ ПО ОБЩЕЙ	105
гасчетный и аналитический тест №7. ПЕТИПОВЫЕ МОДЕЛИ ОТКАЗОВ ПО ОВЩЕИ	104
ПРИЧИНЕ	104
Пример 7.1. Оценка вероятности незапуска системы из трех генераторов с учетом ООП	104
Пример 7.2. Учет ООП в системе с коллекторной структурой	108
Выводы по результатам Теста №7	112
Расчетный и аналитический тест №8. МОДЕЛИ КОМБИНАТОРНЫХ ПОДСИСТЕМ	113
Пример 8.1. Расчет статических вероятностных показателей комбинаторной подсистемы К/	3 114
Пример 8.2. Расчет надежности невосстанавливаемой комбинаторной подсистемы К/4 с задан	ной
средней наработкой до отказа элементов в предположении экспоненциального распределения	118
Пример 8.3. Расчеты вероятностных характеристик высокоразмерных комбинаторных подсис	тем124
Выводы по результатам Теста №8	128
Расчетный и аналитический тест №9 ЛВУХУРОВНЕВАЯ ЛЕКОМПОЗИЦИЯ СФЦ И	ſ
ΑΠΠΑΡΑΤ ΚΡΑΤΗΟCTИ ΒΕΡΙΙΙИΗ Β ΑΗΑ ΠИЗΕ ΒЫСОКОРАЗМЕРНЫХ СИСТЕМ	130
	150
Пример 9.1. Моделирование и расчет надежности на основе неоекомпозированной СФЦ	131 СФП
Пример 9.2. Мооелирование и расчет наоежности АСУ на основе частично оекомпозированной	
$\Pi_{\text{max}} = 0.2$ Madamunangunan undergen undergen ACV un action not undergen in devourse and M	152 M
Пример 9.5. Мобелирование и расчет набежности АСУ на основе полностью бекомпозированно СФП	чи 12л
СФЦ	134
Пример 9.4. мооелирование и расчет наоежности АСУ с использованием аппарата кратности	вершин 126
Π_{max}	150
Пример 9.5. товелирование и расчет навежности АСУ с совместным использованием векомпоз	иции и 120
аппарата кратности вершин	130
Бывооы по результатам тести №9	140
Расчетный и аналитический тест №10. ОГРАНИЧЕНИЯ РАЗМЕРНОСТИ МОДЕЛЕИ	141
Примеры 10.1. Ограничения размерности структурной постановки задач	141
Примеры 10.2. Ограничения размерности логического моделирования	149
Примеры 10.3. Ограничения размерности вероятностного моделирования	155
Примеры 10.4. Ограничения размерности вычислений	159
Примеры 10.5. Высокоразмерная декомпозированная СФЦ с циклами	161
Выводы по результатам Теста №10	171
	170
ЕГЕЧЕПЬ ИСТОЧНИКОВ	1/3

СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ

ACM	-	автоматизированное структурно-логическое моделирование	
АСУ	-	автоматизированная система управления	
Безопасность	_	свойство защищенности системного объекта от опасностей возникновения аварийных ситуаций и аварий, вследствие отказов его элементов и подсистем	
ВАБ	-	вероятностный анализ безопасности	
ВБР	-	вероятность безотказной работы	
ВΦ	-	вероятностная функция (многочлен)	
ВВЧ	-	вода высокой чистоты	
ГНС	-	группа несовместных событий	
3AC	-	запроектная аварийная ситуация	
3A	-	запроектная авария	
ЗРИ	-	закрытые радионуклидные источники	
КГ	-	компенсирующая группа (стержней)	
КПУФ	-	кратчайшие пути успешного функционирования	
КН	-	конденсатный насос	
Корректность	-	правильность, в рамках принятых ограничений и допущений	
ЛВИ	—	Логико-вероятностное исчисление	
ЛВМ	—	логико-вероятностные методы	
ЛКФ	-	логический критерий функционирования	
ЛОГ@ВФ	_	библиотека программных модулей автоматизированного по- строения логических и вероятностных математических моделей систем	
МСО	-	минимальные сечения отказов	
Надежность –		свойство объекта сохранять во времени способность к выполнению требуемых функцийв заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования (ГОСТ 27.002-89, [64])	
НИР	_	научно-исследовательская работа	
ОАО "СПИК СЗМА"	_	открытое акционерное общество "Специализированная инжини- ринговая компания "Севзапмонтажавтоматика", Санкт- Петербург (разработчик ПС - "ПК АСМ СЗМА").	
ОПО	_	опасный производственный объект	
ОИАЭ	_	объект использования атомной энергии	
ОЛВМ	_	общий логико-вероятностный метод	
ООП	-	отказы по общей причине	
OB	_	Отчет о верификации программного средства "Программный комплекс автоматизированного структурно-логического моделирования и расчета показателей надежности и безопасности систем, базовая версия 1.0"	

Π	-	перемычка
ПАС	_	проектная аварийная ситуация
ПАЗ	_	противоаварийная защита
ПК	_	программный комплекс
ПК АСМ СЗМА	_	программный комплекс автоматизированного структурно- логического моделирования и расчета показателей надежности и безопасности систем, базовая версия 1.0, разработан ОАО "СПИК СЗМА", представлен к аттестации
ПН	_	питательный насос
ΠΓ	-	парогенератор
ПК	_	питательный клапан
РЭСцентр	_	межотраслевой экспертно-сертификационный, научно- технический и контрольный центр ядерной и радиационной безо- пасности, Санкт-Петербург
СФИ	_	стенд физических измерений
СФЦ	—	схема функциональной целостности
СЦР	—	самоподдерживающаяся цепная реакция
СЭС	_	система электроснабжения
СПВ	—	система поддержания вакуума
СГК	_	секция главного конденсатора
Технический риск	_	вероятность отказа технических устройств с последствиями определенного уровня (класса) за определенный период функционирования опасного производственного объекта и которая определяется соответствующмими методами теории надежности (РД 03-418-01 ,"Методические указания по проведению анализа риска ОПО" Госгортехнадзора РФ [34])
ТΓ	-	турбогенератор
ФИ	-	канал физических измерений
ΦΡΟ	_	функция работоспособности системы (логическая)
VER	_	ядерная энергетическая установка

ВВЕДЕНИЕ

В соответствии с п.23 Положения об аттестации ПС [36] в данном приложении заключительной редакции Отчета о верификации приводится сопоставление результатов моделирования и расчетов показателей надежности и безопасности систем на аттестуемом ПС "ПК АСМ СЗМА, базовая версия 1.0":

- с аналогичными результатами, полученными ПК Risk Spectrum [23-25], аттестованном в НТЦ ЯРБ в 2003 г., и ПК Relex [21, 22, 66], широко используемом во многих странах для анализа надежности и безопасности сложных систем;
- с аналитическими решениями, приведенными в тексте отчета или опубликованными в литературных источниках;
- с результатами теоретического анализа на непротиворечивость результатов физическому смыслу исследуемого процесса.

Дополнительно, для контроля согласованности и непротиворечивости результатов моделирования и расчетов, выполняемых ПК АСМ СЗМА, применяется способ сопоставления результатов прямого и обратного логико-вероятностного моделирования.

Представленный к аттестации ПК АСМ СЗМА содержит папку "Проекты", в которой хранятся исходные данные 10 Тестов. Полные адреса размещения Тестов, Примеров и Задач в папке "Проекты" указываются в тексте данного раздела отдельной строкой в фигурных скобках, например

{Проекты. Тест_1. Пример_1_1. Пример_1_1_безотказность_СФИ}.

Для контрольного решения в ходе экспертизы тестовых примеров с помощью ПК ACM C3MA необходимо и достаточно выполнить следующие действия:

- включить ПК АСМ СЗМА;
- нажать кнопку "Открыть" панели инструментов;

- в отрывшемся окне по адресу указанному в фигурных скобках найти нужный пример и запустить соответствующий файл с расширением "_ _ _.sfc", после чего проект будет загружен в ПК АСМ СЗМА со всеми исходными данными этого примера и требуемыми параметрами режима моделирования и расчетов;
- нажать кнопку "Моделирование и расчет" панели инструментов ПК АСМ СЗМА;
- после окончания процесса моделирования и расчетов, наблюдать полученные результаты в окне результатов ПК АСМ СЗМА (страницы "Результаты", "Диаграммы" и "Отчет") или в файле хранения результатов rezacm.lst, расположенном в последней папке выбранного примера.

Точная исходная копия папки "Проекты" также размещена на диске верификационного отчета.

Расчетный и аналитический тест №_1. ВЕРОЯТНОСТНЫЙ АНАЛИЗ НАДЕЖНОСТИ И БЕЗОПАСНОСТИ СТЕНДА ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ

Справка. Задача разработана специалистами Межотраслевого экспертно-сертификационного, научно-технического и контрольного центра ядерной и радиационной безопасности (РЭСцентр, Санкт-Петербург) для стенда физических измерений (подкритического стенда), выполненного в соответствии с Методикой определения остаточного ресурса объектов использования атомной энергии [17]

1.1. Описание задачи

На Рис. 1 приведена функциональная схема стенда физических измерений (СФИ). На схеме представлены подсистемы, безотказная работа элементов которых (обозначены кружками), обеспечивает условия безотказного и безаварийного функционирования исследуемого СФИ.

Рис. 1. Функциональная схема стенда физических измерений

Для построения СФЦ и задания логических критериев, необходимых для применения ПК АСМ СЗМА, специалистами РЭСцентра был выполнен анализ технологических операций функционирования СФИ. Результаты этого анализа позволяют сделать следующие заключения:

1. Посредством оборудования Системы перемещения по объекту каждое изделие (сборка) последовательно с помощью мостового крана 1, грузового лифта 2, подвесного электрического крана 3, специальной и портальной тележек 4, 5 извлекается из хранилища сборок и перемещается по объекту (зданию) в специальное помещение, где производятся контрольные измерения. Надежность и безаварийность СФИ здесь обеспечиваются безотказной работой элементов 1-5 системы перемещения изделий по объекту. При этом считается, что отказ любого элемента 1-5 приводит к *функциональному отказу СФИ* и возникновению *проектной аварии СФИ* (не вызывает самоподдерживающейся цепной реакции (СЦР) деления).

- 2. В помещении сборки и в каньоне установлена система Спецвентиляции (элементы 8, 9). Считается, что отказ хотя бы одного из этих элементов приводит к функциональному отказу и возникновению проектной аварии СФИ.
- 3. Подсистема Строительные конструкции объекта включает в себя:
 - несущие конструкции фундамент, стены, перекрытия стендового корпуса (элемент 38);
 - железобетонные колодцы хранения закрытых радионуклидных источников (ЗРИ) (элемент 39).

Считается, что отказ любой из указанных строительных конструкций приводит к *функциональному отказу* и возникновению *проектной аварии СФИ*.

- 4. Закрытые радионуклидные источники (ЗРИ) нейтронов хранятся в железобетонных колодцах в отдельном хранилище. Под отказом ЗРИ понимается событие возможной его разгерметизации в нормальных условиях эксплуатации и хранения (элемент 40). Данный отказ ЗРИ приводит к функциональному отказу и возникновению проектной аварии СФИ.
- 5. В хранилище изделий, находящихся на объекте, установлены два датчика (32, 33) подсистемы Сигнализации в хранилище. Они предназначены для сигнализации о возникновении аварии в хранилище изделий (сборок). Однако, отказ собственно системы сигнализации (отказ любого из датчиков)

приводит только к *функциональному отказу СФИ* (не приводят к возникновению проектной аварии или другой аварийной ситуации).

- 6. Подсистема Контроль изделия на специальном оборудовании 6 производит контроль конструкционных параметров (габаритов, изгиба и др.), а на установке вакуумирования 7 выполняется проверка герметичности сборки. Функциональным отказом СФИ в данной операции считается непрохождение любого из указанных видов контроля изделием, вследствие отказов элементов 6 или 7. Считается, что эти отказы не приводят к проектной аварии или возникновению другой аварийной ситуации СФИ. Прошедшее контроль изделие перемещается и устанавливается в помещение каньона стенда в одно из гнезд специальной сборки, находящейся в баке из нержавеющей стали.
- 7. Непосредственно в процессе физических измерений с помощью оборудования 45 Перемещения компенсирующих групп (КГ) стержни опускаются в бак с изделием и препятствуют возникновению самоподдерживающейся цепной реакции. Отказы КГ 45 или элементов системы электроснабжения 13, 31 приводят к возникновению запроектной аварии СФИ (неуправляемой самоподдерживающейся цепной реакции деления).
- 8. Для выполнения физических измерений бак с изделием и компенсирующими группами стержней должен быть заполнен водой высокой чистоты из Установки ВВЧ, состоящей из насоса ЦНГ-70М2 (элемент 10) и приборов ВВЧ (элемент 11). Считается, что в процессе физических измерений отказ хотя бы одного из указанных элементов приводит к возникновению запроектной аварийной ситуации СФИ (неуправляемой самоподдерживающейся цепной реакции деления).
- Оборудование Блока физических измерений включает в себя следующие объекты: элемент 12 стойка УХ-04Р, элемент 14 блок питания БНВЗ-05, а также две линии специальных измерительных приборов с внутренним резервированием элементов:

- канал измерения физической мощности: 15, 16 (КСП-4); 17, 18 (ЗИИ-2Р); 19, 20 (СПУ-1-1-М); частотомеры 21, 22 (ЧЗ-54);
- счетный канал (СК): счетчики нейтронов 23, 24 (СНМ-12), счетные устройства 25, 26 (АКС-01С), частотомеры 27, 28 (Ч3-54).

Для производства физических измерений осуществляется вывод сборки на мощность посредством медленного выдвижения стержней компенсирующих групп из заполненного водой бака с помощью оборудования управления перемещением КГ 45. Начало самоподдерживающейся цепной реакции деления должно фиксироваться одновременно каналом измерения физической мощности и счетным каналом блока физических измерений. Сразу после начала реакции производится ее прекращение путем введения в бак КГ стержней. Считается, что в процессе физических измерений отказ хотя бы одного из указанных каналов приводит к возникновению *запроектной аварийной ситуации СФИ* (неуправляемой самоподдерживающейся цепной реакции деления).

10. Система Противоаварийной автоматической защиты (ПАЗ) предназначена для управления процессом локализации самоподдерживающейся цепной реакции деления, вызванного отказами оборудования Блока физических измерений или Установки ВВЧ. Датчики ДРГ-1М (элементы 43 или 44) выдают сигналы о начале СЦР деления. По сигналу датчиков включается аварийная защита (элемент 37), которая обеспечивает быстрый ввод в бак со сборкой компенсирующих групп (КГ) стержней (16), чем обеспечивается локализация запроектной аварийной ситуации (прекращение СЦР) и сведения ее до уровня проектной аварии СФИ. В противном случае происходит запроектная авария СФИ.

В данном примере СФИ рассматривается как невосстанавливаемая система. В Табл. 1 приведены заданные значения T_{Oi} средней наработки до отказа (в годах) всех элементов, которые используются при расчетах показателей надежности (безотказности) и безопасности (безаварийности, технического риска) СФИ с помощью ПК АСМ СЗМА.

N⁰	T [n]	Ионичеровно оконство СФИ
эл-та	I_{Oi} [1.]	паименование элемента СФИ
1	4	Кран мостовой
2	5.5	Лифт грузовой
3	12	Кран подвесной электрический
4	11	Тележка специальная
5	8	Тележка портальная
6	10	Система контроля конструктивных параметров
7	6	Установка вакуумирования систем изделий
8	12	Спец. вентиляция помещения сборки
9	12	Электрическая часть спец. вентиляции каньона
10	6	Насос (ЦНГ-702М) и оборудование ВВЧ
11	6	Приборы ВВЧ
12	6	Стойка УХ-04Р
13	6	Стойка питания системы электроснабжения
14	4.5	Блок питания БНВЗ-05
15	2	КСП-4
16	2	КСП-4
17	5	ЗИИ-2Р
18	5	ЗИИ-2Р
19	2.2	СПУ-1-1М
20	2.2	СПУ-1-1М
21	1.5	Частотомер ЧЗ-54
22	1.5	Частотомер ЧЗ-54
23	3	CHM-12
24	3	CHM-12
25	7	AKC-01C
26	7	AKC-01C
27	1.5	Частотомер ЧЗ-54
28	1.5	Частотомер ЧЗ-54
31	10	Источник питания системы электроснабжения
32	2.5	Сигнализатор ДРГ-1М-03 в хранилище (комплект 91)
33	2	Сигнализатор ДРГ-1М-03 в хранилище (комплект 96)
37	10	Аварийная защита
38	10	Несущие конструкции: фундамент, стены, перекрытия стендового корпуса
39	12	Железобетонные колодцы для хранения ЗРИ
40	10	Радионуклидные источники на основе плутоний-берилия
43	5.5	Система аварийной сигнализации на участке (ДРГ-1М №98)
44	3	Система сигнализации стенда ХИ (№125)
45	5	Оборудование управления перемещением КГ

Табл. 1. Параметры надежности элементов СФИ

Требуется построить математические модели и рассчитать следующие вероятностные показатели безотказности и безаварийности исследуемой СФИ:

- Вероятность $P_{C\phi H}(t)$ безотказного функционирования (или функционального отказа $Q_{C\phi H}(t) = 1 P_{C\phi H}(t)$) СФИ на интервале t = 1000 часов заданной наработки;
- Вероятности $P_{\Pi A}(t)$ возникновения (или вероятности невозникновения $Q_{\Pi A}(t) = 1 P_{\Pi A}(t)$) проектной аварии (ПА) СФИ на интервале t = 1000 часов заданной наработки;
- Вероятности Р_{Локализации ЗАС}(t) возникновения и локализации системой ПАЗ запроектной аварийной ситуации СФИ (самоподдерживающейся цепной реакции деления) и ее сведение к проектной аварии на интервале t = 100 часов заданной наработки (средней продолжительности цикла физических измерений);
- Вероятности P₃₄(t) возникновения запроектной аварии СФИ на интервале
 t = 100 часов заданной наработки (средней продолжительности цикла физических измерений).

1.2. Формализованная постановка задачи в ПК АСМ СЗМА

На основе функциональной схемы (см. Рис. 1) и описания технологического процесса СФИ для проведения вероятностного анализа безотказности и безопасности (технического риска) СФИ с помощью ПК АСМ СЗМА разработана СФЦ, изображенная на Рис. 2.

При построении СФЦ применялся прямой подход (прямая логика рассуждений). Каждая функциональная вершина 1-28, 31-33, 37-39 и 40-45 представляет исход безотказности (работоспособности) соответствующих элементов СФИ. С помощью фиктивных вершин 34, 35, 36, 41, 46, 49, 58 представлены логические условия безотказной работы и безаварийности (невозникновения аварийных ситуаций) в основных подсистемах СФИ, указанных на Рис. 1. Эти логические условия вытекают из приведенного выше описания технологического процесса работы различных подсистем СФИ.

Рис. 2. СФЦ безотказности и безаварийности СФИ

В разработанной СФЦ с помощью выходных интегративных функций ряда фиктивных вершин представлены важные для последующего анализа надежности (безотказности) и безопасности (технического риска возникновения аварийных ситуаций и аварий) СФИ логические условия.

- Прямые выходы y₃₄ и y₄₉ фиктивных вершин 34 и 49 определяют условия безотказности подсистем Сигнализаторов в хранилище и Контроля изделий. Согласно описанию технологического процесса (см. §1.1 п.5 и п.6) отказы этих подсистем приводят только к функциональному отказу, т.е. не вызывают проектной аварии (ПА), запроектной аварийной ситуации (ЗАС) и запроектной аварии (ЗА) исследуемого СФИ.
- Прямой выход y₅₁ фиктивной вершины 51 определяет условия невозникновения таких функциональных отказов подсистем, которые отнесены (по уровню последствий) к проектным авариям СФИ (не предполагают их ло-

кализации средствами ПАЗ). Согласно описанию технологического процесса СФИ (см. §1.1 п.1, 2, 3, 4) это отказы хотя бы одной из подсистем - Перемещения по объекту, Спецвентиляции, Строительных конструкций или Радионуклидных источников.

- 3. Прямой выход y_{36} фиктивной вершины 36 определяет условия не возникновения (в ходе непосредственных физических измерений) запроектной аварийной ситуации (ЗАС) исследуемого СФИ. Согласно описанию технологического процесса СФИ (см. §1.1 п.8, 9) это обеспечивается безотказной работой Установки ВВЧ и обоих каналов Блока физических измерений. Инверсные выходы \overline{y}_{36} определяют условия возникновения запроектной аварийной ситуации, которая должна локализоваться посредством безотказной работы оборудования ПАЗ и перемещения КГ (см. §1.1 описание технологического процесса п.10).
- Прямой выход y₅₂ фиктивной вершины 52 определяет условия безотказной работы тех подсистем, которые обеспечивают непосредственные физические измерения и в совокупности определяют условия невозникновения запроектной аварийной ситуации СФИ.
- 5. Прямой выход y₅₄ фиктивной вершины 54 определяет условия возникновения запроектной аварийной ситуации и ее локализацию посредством безотказной работы оборудования системы ПАЗ и перемещения КГ, т.е. сведения ЗАС к штатному уровню последствий, т.е. к проектной аварии.

Для решения поставленных задач моделирования и расчета вероятностных показателей надежности и безопасности СФИ разработанная СФЦ (см. Рис. 2) и заданные параметры элементов (см. Табл. 1) вводятся в ПК АСМ СЗМА. Общий вид интерфейса пользователя ПК АСМ СЗМА после ввода СФЦ исследуемого СФИ и параметров элементов изображен на Рис. 3.

Рис. 3. Вид интерфейса пользователя ПК АСМ СЗМА после ввода формализованных исходных данных для анализа СФИ

<u>Пример 1.1. Расчет вероятности безотказного</u> функционирования и отказа СФИ

{Проекты. Тест_1. Пример_1_1. Пример_1_1_безотказность_СФИ}

Вероятность *P_{СФИ}(t)* безотказного функционирования СФИ определяется сложным событием, включающим в себя следующие составляющие:

- Невозникновение функциональных отказов y₄₉ и y₃₄ подсистем Контроля изделий и Сигнализации в хранилище, которые не являются аварийными для СФИ;
- 2. Невозникновение проектных аварий (у₅₁);
- 3. Невозникновение запроектных аварийных ситуаций (у₅₂).

Таким образом, логический критерий безотказного функционирования (надежности) СФИ составляет:

$$Y_{C\phi H} = y_{49} \cdot y_{34} \cdot y_{51} \cdot y_{52} = y49y34y51y52.$$
(1)

В правой части выражения (1) приведена форма логического критерия, которая непосредственно вводится (записывается) в окно "Ввод ЛКФ" панели управления ПК АСМ СЗМА (см. OB, рис.2, п.3).

Для расчета показателей надежности СФИ как невосстанавливаемой системы, устанавливается режим "Вероятностно-временные расчеты" и в окно "Наработка системы" записывается заданное значение общей наработки СФИ $t = 1000 \ uac.$ (см. OB, рис.2, п.5)

После ввода указанных исходных данных в ПК АСМ СЗМА включается кнопка "Моделирование и расчет" (см. ОВ, рис.2, п.3) и на экране дисплея получаем следующие результаты.

Рис. 4. Результаты моделирования и расчетов вероятности безотказного функционирования СФИ

Дополнительную информацию о результатах решения данного примера можно просмотреть на закладках «Диаграммы», «Отчет» окна интерфейса пользователя ПК АСМ СЗМА и в файле rezasm.lst.

В Табл. 2 приведены основные результаты моделирования и расчетов вероятностных показателей безотказного функционирования СФИ, полученные в ПК ACM C3MA.

№ п/п	Наименование			Резуль	ьтат				
1	Коли логи тоспо	Количество конъюнкций логической функции рабо- тоспособности СФИ							
2	Логическая функция рабо- тоспособности СФИ (крат- чайшие пути успешного функционирования)			Усфи = . x32 x33 x x24 x26 x x16 x18 x x11 x12 x	Yccfu = x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x16 x18 x20 x22 x24 x26 x28 x31 x32 x33 x38 x39 x40 x45 vx1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x17 x19 x21 x24 x26 x28 x31 x32 x33 x38 x39 x40 x45 vx1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x16 x18 x20 x22 x23 x25 x27 x31 x32 x33 x38 x39 x40 x45 vx1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x17 x19 x21 x23 x25 x27 x31 x32 x33 x38 x39 x40 x45 vx1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x17 x19 x21 x23 x25 x27 x31 x32 x33 x38 x39 x40 x45				
3	Количество одночленов в многочлене вероятностной функции работоспособно-		9						
4	Многочлен вероятностной функции работоспособно- сти СФИ			Pccfu = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 p22 p24 p26 p28 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p17 p19 p21 p24 p26 p28 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 p22 p23 p25 p27 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p17 p19 p21 p23 p25 p27 p31 p32 p33 p38 p39 p40 p45 - p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p25 p27 p31 p32 p33 p38 p39 p40 p45 - p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p17 p19 p21 p23 p24 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p45 - p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p25 p27 p31 p32 p33 p38 p39 p40 p45 - p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p17 p19 p21 p23 p24 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p45 - p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p24 p26 p28 p31 p32 p33 p38 p39 p40 p45 - p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 p22 p23 p24 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p5 p26 p27 p28 p31 p32 p33 p38 p30 p40 p45					
5	Bepo	ятность безотказн	юго ыл	$P_{C\phi W}$	(1000час) =	= 0.634658575170			
6	Сред за Со	няя наработка до ФИ	отка-	$T_{OC\Phi H} = 0.219 cod = 1918 vac$					
				Значим	ости и вклады	і элементов СФИ			
	№ Эл	Значимость	Отрица вк	ительный глад	Положитель- ный вклад	Наименование элемента			
	1	0.6530319	-0.6346	5858	0.0183733	Кран мостовой			
	2	0.6479688	-0.6346	5858	0.0133103	Лифт грузовой			
	3	0.6407248	-0.6346	5858	0.0060662	Кран подвесной электрический			
	4	0.6412792	-0.6346	5858	0.0066206	Гележка специальная			
	5	0.6419450	-0.6346	5858	0.0091211	Гележка портальная			
	7	0.6468491	-0.6346	5858	0.0121905	Установка вакуумирования систем изделий			
	8	0.6407248	-0.6346	5858	0.0060662	Спец. вентиляция помещения сборки			
	9	0.6407248	-0.6346	5858	0.0060662	Электрическая часть спец. вентиляции каньона			
7	10	0.6468491	-0.6346	5858	0.0121905	Насос (ЦНГ-702М) и оборудование ВВЧ			
/	11	0.6468491	-0.6346	5858	0.0121905	Приборы ВВЧ			
	12	0.0408491	-0.6346	5858	0.0121905	Стоика у А-04Р Стойка питания			
	13	0.6509644	-0.6346	5858	0.0163058	Блок питания БНВЗ-05			
	15	0.1061965	-0.1003	0487	0.0058917	КСП-4			
	16	0.1061965	-0.1003	0487	0.0058917	КСП-4			
	17	0.1026212	-0.1003	0487	0.0023164	ЗИИ-2Р			
	18	0.1026212	-0.1003	0487	0.0023164	ЗИИ-2Р			
	19	0.1056469	-0.1003	0487	0.0053420	CIIV-1-1M			
	20	0.1030409	-0.1003	0487	0.0033420	UIIV-1-IIVI Vactoromen V3-54			
	21	0.1082364	-0.1003	0487	0.0079315	Частотомер ЧЗ-54			
	23	0.0718486	-0.0691	6605	0.0026826	CHM-12			
	24	0.0718486	-0.0691	6605	0.0026826	CHM-12			
	25	0.0703032	-0.0691	6605	0.0011372	AKC-01C			
	26	0.0703032	-0.0691	6605	0.0011372	AKC-01C			

Табл. 2. Результаты моделирования функциональной безотказности СФИ

Т

0.7	0.054(0.50	0.00016605	0.0054603		
27	0.0746353	-0.06916605	0.0054692	Частотомер ЧЗ-54	
28	0.0746353	-0.06916605	0.0054692	Частотомер ЧЗ-54	
31	0.641945	-0.63465858	0.0072864	Источник питания	
32	0.6643102	-0.63465858	0.0296516	Сигнализатор ДРГ-1М-03 в хранилище	
33	0.6719371	-0.63465858	0.0372785	Сигнализатор ДРГ-1М-03 в хранилище	
37	0.0	0.0	0.0	Аварийная защита	
38	0.6419450	-0.63465858	0.0072864	Несущие конструкции: фундамент, стены, и др.	
39	0.6407248	-0.63465858	0.0060662	Ж.б колоды для хранения ЗРИ	
40	0.6419450	-0.63465858	0.0072864	Радионуклидные источники	
43	0.0	0.0	0.0	Система аварийной сигнализации на участке	
44	0.0	0.0	0.0	Система сигнализации стенда ХИ (№125)	
45	0.6493151	-0.63465858	0.0146566	Оборудование управления перемещением КГ	

Для подтверждения корректности решения этого примера ПК ACM C3MA полученный машинный результат $P_{C\phi H}(1000 \, vac) = 0.634658575170$ расчета вероятности безотказной работы СФИ сопоставляется с аналитическим расчетом этого показателя.

 На основе соотношений (15) вычисляются вероятности безотказной работы элементов, определяющих (согласно СФЦ на Рис. 2 и ЛКФ (1)) функциональную безотказность СФИ:

№ эл-та	Тоі [год]	t [час] (наработка)	Pi	№ эл-та	Тоі [год]	t [час] (наработка)	Pi
1	4	1000	0.97186457	20	2.2	1000	0.94943449
2	5.5	1000	0.97945841	21	1.5	1000	0.92672029
3	12	1000	0.99053217	22	1.5	1000	0.92672029
4	11	1000	0.98967591	23	3	1000	0.96266312
5	8	1000	0.98583192	24	3	1000	0.96266312
6	10	1000	0.98864938	25	7	1000	0.98382436
7	6	1000	0.98115397	26	7	1000	0.98382436
8	12	1000	0.99053217	27	1.5	1000	0.92672029
9	12	1000	0.99053217	28	1.5	1000	0.92672029
10	6	1000	0.98115397	31	10	1000	0.98864938
11	6	1000	0.98115397	32	2.5	1000	0.95536472
12	6	1000	0.98115397	33	2	1000	0.94452075
13	6	1000	0.98115397	37	10	1000	0.98864938
14	4.5	1000	0.97495123	38	10	1000	0.98864938
15	2	1000	0.94452075	39	12	1000	0.99053217
16	2	1000	0.94452075	40	10	1000	0.98864938
17	5	1000	0.97742761	43	5.5	1000	0.97945841
18	5	1000	0.97742761	44	3	1000	0.96266312
19	2.2	1000	0.94943449	45	5	1000	0.97742761

2. Рассчитываются вероятности безотказной работы бесповторных фрагментов СФИ (см. Рис. 1 и Рис. 2), обеспечивающих реализацию логических условий ее безотказной работы, заданных ЛКФ (1):

$$\begin{split} p(y49) &= p_6 p_7 = 0.98864938 * 0.98115397 = 0.970017273; \\ p(y34) &= p_{32} p_{33} = 0.95536472 * 0.94452075 = 0.902361804; \\ p(y51) &= p_1 p_2 p_3 p_4 p_4 p_8 p_9 p_{40} p_{38} p_{39} = 0.873869463; \\ p(y58) &= p_{10} p_{11} = 0.873869463; \end{split}$$

$$\begin{split} p(y14) &= p_{14}p_{12} = 0.95657727 \ ; \\ p(y13) &= p_{13}p_{31} = 0.970017273 ; \\ p(y21) &= p_{21}p_{19}p_{17}p_{15} = 0.812287508 \ ; \\ p(y22) &= p_{22}p_{20}p_{18}p_{16} = 0.812287508 \ ; \\ p(y29) &= p(y21) + p(y22) - p(y21)p(y22) = 0.964764021 \ ; \\ p(y27) &= p_{27}p_{25}p_{23} = 0.87768884 \ ; \\ p(y28) &= p_{28}p_{26}p_{24} = 0.87768884 \ ; \\ p(y30) &= p(y27) + p(y28) - p(y27)p(y28) = 0.98503998 \ ; \\ p(y52) &= p(y58)p(y29)p(y30)p(y14)p(y13)p_{45} = 0.829723551 \ . \end{split}$$

3. Окончательный расчет вероятности безотказной работы СФИ, выполняется непосредственно по ЛКФ (1).

$$P_{C\phi H}(1000 \text{ vac}) = p(y49y34y51y52) = p(y49)p(y34)p(y51)p(y52) = 0.970017273 * 0.902361804 * 0.873869463 * 0.829723551 = 0.634658575$$

Выполненный аналитический расчет вероятности безотказности работы СФИ точно совпадает с результатом, приведенным в Табл. 2 п.5, что подтверждает корректность решения этого примера ПК АСМ СЗМА.

Логическая полнота методов моделирования ПК АСМ СЗМА позволяет осуществить дополнительный контроль на непротиворечивости полученных результатов. Для этого необходимо изменить логический критерий (1) на противоположный (инвертировать) и повторить решение на ПК АСМ СЗМА.

Инверсия логического критерия (1) составляет

$$\overline{Y}_{CBH} = \overline{y_{49} \cdot y_{34} \cdot y_{51} \cdot y_{52}} = \overline{y}_{49} \vee \overline{y}_{34} \vee \overline{y}_{51} \vee \overline{y}_{52} = y''49 + y''34 + y''51 + y''52$$
(2)

После ввода ЛКФ (2) и нажатия кнопки "Моделирование и расчет" ПК АСМ СЗМА выполняет построение математических моделей и вероятностных показателей функционального отказа рассматриваемого СФИ.

{Проекты.Тест_1.Пример_1_1.Пример_1_1_отказ_СФИ}

Результаты решения этого примера приведены в Табл. 3.

№ п/п	Наим	енование		Резул	іьтат		
1	Количество конъюнкций логической функции отказа СФИ			46			
2	СФИ Логическая функция отказа СФИ (минимальные сече- ния отказа)			Y"сфи	= x"7 x"6 x"33 x"32 x"5 x"4 x"5 x"4 x"3 x"2 x"1 x"9 x"8 x"39 x"8 x"39 x"8 x"39 x"38 x"40 x"45 x"11 x"10 x"23 x"24 x"24 x"25 x"24 x"27	x"23 x"28 x"25 x"28 x"27 x"28 x"31 x"13 x"13 x"14 x"16 x"17 x"16 x"17 x"16 x"19 x"16 x"19 x"16 x"21 x"15 x"18 x"17 x"18 x"17 x"18 x"18 x"19 x"18 x"21 x"15 x"20 x"17 x"20 x"17 x"20 x"17 x"22 x"17 x"22 x"19 x"22 x"21 x"22	
3	Количество одночленов в многочлене вероятностной функции работоспособно- сти СФИ			190			
4	Многочлен вероятностной функции работоспособно- сти СФИ			Здесн сти. І вател	многочлен ВФ Его можно поси я или в файле и	Ф не приведен по причине его большой размерно- мотреть на странице "Отчет" интерфейса пользо- rezacm.lst.	
5	Вероя ного с	тность функцис отказа СФИ	эналь-	$Q_{C\phi H}(1000 \ vac) = 0.36534142483 = = 1 - 0.63465857517$			
6	Средн за СФ	іяя наработка до И	о отка-	для и	нверсных моде	лей не вычисляется	
				Значи	мости и вклад	цы элементов СФИ	
	№ Эл	Значимость	Отрица ны вкл	атель- й ад	Положитель- ный вклад	Наименование элемента	
	1	-0.65303191	0.63465	858	-0.01837333	Кран мостовой	
	2	-0.64796888	0.63465	858	-0.01331031	Лифт грузовой	
	3	-0.64072485	0.63465	858 858	-0.00606628	Кран подвесной электрический	
	5	-0.6437797	0.63465	858	-0.00912112	Тележка портальная	
	6	-0.64194505	0.63465	858	-0.00728647	Система контроля конструктивных параметров	
	7	-0.64684911	0.63465	858	-0.01219053	Установка вакуумирования систем изделий	
	8	-0.64072485	0.63465	858 858	-0.00606628	Спец. вентиляция помещения сборки	
	9	-0.64684911	0.63465	858	-0.01219053	Насос (ШНГ-702М) и оборудование ВВЧ	
	_ 11	-0.64684911	0.63465	858	-0.01219053	Приборы ВВЧ	
	12	-0.64684911	0.63465	858	-0.01219053	Стойка УХ-04Р	
	13	-0.64684911	0.63465	858	-0.01219053	Стойка питания	
	14	-0.05096444	0.63465	838 487	-0.01630586	ылок питания ыныз-05 КСП-4	
	15	-0.10619657	0.10030	487	-0.00589171	КСП-4	
	17	-0.10262127	0.10030	487	-0.00231641	ЗИИ-2Р	
	18	-0.10262127	0.10030	487	-0.00231641	ЗИИ-2Р	
	19	-0.10564696	0.10030	487 487	-0.00534209	СПУ-1-1М СПУ-1-1М	
	20	-0.10823640	0.10030	487	-0.00793153	Частотомер ЧЗ-54	
	22	-0.10823640	0.10030	487	-0.00793153	Частотомер ЧЗ-54	
	23	-0.07184865	0.06916	605	-0.0026826	CHM-12	
	24	-0.07184865	0.06916	605	-0.0026826	CHM-12	
	25	-0.07030325	0.06916	605	-0.0011372	AKC-01C	
	20	-0.07030323	0.00916	000	-0.00113/2	AKC-UIC	

Табл. 3. Результаты моделирования функционального отказа СФИ

	27	-0.07463530	0.06916605	-0.00546925	Частотомер ЧЗ-54	
	28	-0.07463530	0.06916605	-0.00546925	Частотомер ЧЗ-54	ĺ
	31	-0.64194505	0.63465858	-0.00728647	Источник питания	ĺ
	32	-0.66431025	0.63465858	-0.02965167	Сигнализатор ДРГ-1М-03 в хранилище	
	33	-0.67193715	0.63465858	-0.03727857	Сигнализатор ДРГ-1М-03 в хранилище	
	37	0.0	0.0	0.0	Аварийная защита	
	38	-0.64194505	0.63465858	-0.00728647	Несущие конструкции: фундамент, стены, и др.	
	39	-0.64072485	0.63465858	-0.00606628	Ж.б колодцы для хранения ЗРИ	ĺ
	40	-0.64194505	0.63465858	-0.00728647	Радионуклидные источники	ĺ
	43	0.0	0.0	0.0	Система аварийной сигнализации на участке	ĺ
	44	0.0	0.0	0.0	Система сигнализации стенда ХИ (№125)	ĺ
	45	-0.64931517	0.63465858	-0.0146566	Оборудование управления перемещением КГ	

Сопоставление результаты решения прямой и обратной задач подтверждают непротиворечивость и согласованность процедур прямого и обратного моделирования и расчетов показателей безотказности и отказа СФИ в ПК АСМ СЗМА.

<u>Пример 1.2. Расчет вероятности возникновения</u> проектной аварии СФИ

{Проекты. Тест_1. Пример_1_2. Пример_1_2_ПА}

Анализ функциональной схемы (см. Рис. 1) и описания технологического процесса (см. §1.1, п.1-4, 8, 9) позволяют заключить, что к возникновению проектной аварии (ПА) СФИ приводят:

- Опосредованно к проектному уровню аварии приводит также локализация возникшей запроектной аварийной ситуации системой ПАЗ и КГ. Эти условия возникновения ПА представлены в СФЦ прямым выходом y₅₄ фиктивной вершины 54.

Поэтому, в качестве логического критерия возникновения на СФИ проектной аварии задается

$$Y_{\Pi A} = \overline{y}_{51} \vee y_{54} = y''51 + y54 \tag{3}$$

Моделирование и расчет вероятности возникновения проектной аварии выполняется для наработки *t* = 100 *часов* (предполагаемое среднее время выполнения одного цикла физических измерений на стенде).

После ввода логического критерия (3), заданной наработки *t* = 100 *часов* в ПК АСМ СЗМА и включения кнопки "Моделирование и расчет", ПК АСМ СЗМА формирует результаты, приведенные в Табл. 4.

№ п/п	Наименование	Результат				
1	Количество конъюнкций логи- ческой функции возникновения проектной аварии	68				
2	Логическая функция возникно- вения проектной аварии (техни- ческого риска уровня ПА)	$ \begin{array}{c} Y_{IIA} = x''^5 \\ x''^4 \\ x''^3 \\ x''^2 \\ x''^1 \\ x''^9 \\ x''^8 \\ x''^39 \\ x''^38 \\ x''^40 \\ x''^{11} x^{13} x^{31} x \\ x''^{10} x^{13} x^{31} x \\ x''^{10} x^{13} x^{31} x \\ x''^{10} x^{13} x^{21} x^{22} \\ x^{13} x''^{24} x''^{27} \\ x^{13} x''^{24} x''^{27} \\ x^{13} x''^{24} x''^{27} \\ x^{13} x''^{24} x''^{27} \\ x^{13} x''^{25} x''^{26} \\ x^{13} x''^{25} x''^{28} \\ x^{13} x''^{25} x''^{28} \\ x'^{12} x^{13} x^{31} x \\ x^{13} x''^{15} x''^{16} \\ x^{13} x''^{16} x''^{17} \\ x^{13} x''^{16} x''^{17} \\ x^{13} x''^{16} x''^{19} \\ x^{13} x''^{15} x''^{18} \\ x^{13} x''^{15} x''^{20} \\ x^{13} x''^{17} x''^{20} \\ x^{13} x''^{19} \\ x^{13} x''^{19} \\ x^{13} x''^{19} x''^{20} \\ x^{13} x''^{19} \\ x^{13} x''^{19}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
3	Количество одночленов в мно- гочлене вероятностной функции	356				
4	Многочлен вероятностной функции возникновения ПА СФИ	Многочлен ВФ не приведен по причине его большой размерности. Этот многочлен можно посмотреть на странице "Отчет" интер- фейса пользователя ПК АСМ СЗМА или в файле rezacm.lst.				
5	Вероятность возникновения проектной аварии СФИ	$P_{\Pi A}(100) = 0.022015184423$				
6	Средняя наработка до возник- новения проектной аварии СФИ	для немонотонни	для немонотонных моделей не вычисляется			
	Зна	ачимости и вклад	ды элементов СФИ			
7	№ Значимость Отрицательный вклад эл. 0.00077005 0.057005	й Положительный вклад	Наименование элемента			
	<u>1</u> -0.98077985 0.97798482 2 -0.98001678 0.97798482	-0.002/9504	Кран мостовой Лифт грузовой			
L	- 0.0001070 0.07770402	0.00205170	1			

Табл. 4. Результаты моделирования и расчета вероятности

3	-0.97891561	0.97798482	-0.00093079	Кран подвесной электрический	
4	-0.97900027	0.97798482	-0.00101546	Тележка специальная	
5	-0.97938134	0.97798482	-0.00139652	Тележка портальная	
6	0.0	0.0	0.0	Сист. контроля конструктивных параметров	
7	0.0	0.0	0.0	Установка вакуумирования систем изделий	
8	-0.97891561	0.97798482	-0.00093079	Спец. вентиляция помещения сборки	
9	-0.97891561	0.97798482	-0.00093079	Электрическая часть спец. вентиляции каньона	
10	-0.97346587	0.97161553	-0.00185034	Насос (ЦНГ-702М) и оборудование ВВЧ	
11	-0.97346587	0.97161553	-0.00185034	Приборы ВВЧ	
12	-0.97346587	0.97161553	-0.00185034	Стойка ҮХ-04Р	
13	0.00863966	-0.00862324	0.00001642	Стойка питания	
14	-0.97408343	0.97161553	-0.00246791	Блок питания БНВЗ-05	
15	-0.01970053	0.0195884	-0.00011213	КСП-4	
16	-0.01970053	0.0195884	-0.00011213	КСП-4	
17	-0.01963318	0.0195884	-0.00004477	ЗИИ-2Р	
18	-0.01963318	0.0195884	-0.00004477	ЗИИ-2Р	
19	-0.01969031	0.0195884	-0.00010191	СПУ-1-1М	
20	-0.01969031	0.0195884	-0.00010191	СПУ-1-1М	
21	-0.01973805	0.0195884	-0.00014964	Частотомер ЧЗ-54	
22	-0.01973805	0.0195884	-0.00014964	Частотомер ЧЗ-54	
23	-0.01247993	0.01243253	-0.0000474	CHM-12	
24	-0.01247993	0.01243253	-0.0000474	CHM-12	
25	-0.01245282	0.01243253	-0.00002029	AKC-01C	
26	-0.01245282	0.01243253	-0.00002029	AKC-01C	
27	-0.01252750	0.01243253	-0.00009498	Частотомер ЧЗ-54	
28	-0.01252750	0.01243253	-0.00009498	Частотомер ЧЗ-54	
31	0.00863309	-0.00862324	0.00000985	Источник питания	
32	0.0	0.0	0.0	Сигнализатор ДРГ-1М-03 в хранилище	
33	0.0	0.0	0.0	Сигнализатор ДРГ-1М-03 в хранилище	
37	0.00863309	-0.00862324	0.00000985	Аварийная защита	
38	-0.97910187	0.97798482	-0.00111706	Несущие конструкции: фундамент, стены, и др.	
39	-0.97891561	0.97798482	-0.00093079	Ж.б колодца для хранения ЗРИ	
40	-0.97910187	0.97798482	-0.00111706	Радионуклидные источники	
43	0.00003275	-0.00003268	0.00000007	Система аварийной сигнализации на участке	
44	0.00001788	-0.00001781	0.00000007	Система сигнализации стенда ХИ (№125)	
45	0.00864295	-0.00862324	0.00001971	Оборудование управления перемещением КГ	

Для подтверждения корректности работы ПК ACM C3MA сопоставим полученный машинный результат расчета вероятности $P_{\Pi A}(100) = 0.022015184423$ возникновения ПА СФИ с аналитическим расчетом этого показателя.

1. Вероятности безотказной работы элементов:

N⁰	Toi	t [час]	D;	N⁰	Toi	t [час]	D;
эл-та	[год]	(наработка)	r i	эл-та	[год]	(наработка)	r i
1	4	100	0.997150	20	2.2	100	0.994825
2	5.5	100	0.997927	21	1.5	100	0.992419
3	12	100	0.999049	22	1.5	100	0.992419
4	11	100	0.998963	23	3	100	0.996202
5	8	100	0.998574	24	3	100	0.996202
8	12	100	0.999049	25	7	100	0.998371
9	12	100	0.999049	26	7	100	0.998371
10	6	100	0.998099	27	1.5	100	0.992419
11	6	100	0.998099	28	1.5	100	0.992419
12	6	100	0.998099	31	10	100	0.998859
13	6	100	0.998099	37	10	100	0.998859
14	4.5	100	0.997466	38	10	100	0.998859
15	2	100	0.994308	39	12	100	0.999049
16	2	100	0.994308	40	10	100	0.998859
17	5	100	0.997719	43	5.5	100	0.997927
18	5	100	0.997719	44	3	100	0.996202
19	2.2	100	0.994825	45	5	100	0.997719

Вероятности безотказной работы и отказа фрагментов СФИ (см. Рис. 2 и ЛКФ (3)), определяющих возникновение проектной аварии, составляют:

$$\begin{split} p(y"51) &= q(y51) = 1 - p_1 p_2 p_3 p_4 p_4 p_8 p_9 p_{40} p_{38} p_{39} = 0.013391946; \\ p(y58) &= p_{10} p_{11} = 0.996202055; \\ p(y14) &= p_{14} p_{12} = 0.995570469; \\ p(y21) &= p_{21} p_{19} p_{17} p_{15} = 0.979424531; \\ p(y22) &= p_{22} p_{20} p_{18} p_{16} = 0.979424531; \\ p(y29) &= p(y21) + p(y22) - p(y21) p(y22) = 0.99957665; \\ p(y27) &= p_{27} p_{25} p_{23} = 0.98703842; \\ p(y28) &= p_{28} p_{26} p_{24} = 0.98703842; \\ p(y30) &= p(y27) + p(y28) - p(y27) p(y28) = 0.999831997; \\ p(y"36) &= q(y36) = 1 - p(y58) p(y29) p(y30) p(y14) = 0.008797079; \\ p(y37) &= p_{37} (p_{43} + p_{44} - p_{43} p_{44}) = 0.998851233; \\ p(y54) &= q(y36) p(y37) p(y45) = 0.829723551; \end{split}$$

 Окончательный аналитический расчет вероятности возникновения проектной аварии СФИ (см. ЛКФ (3))

$$\begin{split} P_{\rm TLA}(100\,{\rm vac}) &= p(y''51 \lor y54) = q(y51) + p(y54) - q(y51)p(y54) = \\ &= 0.013391946 + 0.008740288 - 0.013391946 * 0.008720355 = 0.022015184 \, . \end{split}$$

Полученный результат аналитического расчета точно совпадает с вероятностью, вычисленной ПК АСМ СЗМА (см. Табл.4 п.5).

Для контроля непротиворечивости моделирования данного примера в ПК АСМ СЗМА выполняется расчет вероятности противоположного события – невозникновения проектной аварии СФИ.

{Проекты. Тест_1. Пример_1_2. Пример_1_2_нет_ПА}

Задается ЛКФ, противоположный (3)

$$Y_{IIIAC} = y_{51} \vee y_{54} = y_{51} \cdot y_{54} = y_{51} y''_{54}$$
(4)

и включается кнопка "Моделирование и расчет". Результаты решения этого примера с помощью ПК АСМ СЗМА, приведенные в Табл. 5

Табл. 5.	Результаты	расчета	вероятности	не возникновения	проектной	аварии СФИ
	2	1	1		1	1

№ п/п	Наименование			Результат				
1	Количест логическ никновен рии	гво конъюнкци ой функции во ния проектной	ій)3- ава-	9				
2	Логическая функция не воз- никновения проектной ава- рии (безопасности относи- тельно аварии проектного уровня)			$Y''_{IIA} = x x2 x3 x x3 x $	x4 x5 x8 x9 x10 x11 x 4 x5 x8 x9 x10 x11 x12 4 x5 x8 x9 x38 x39 x4 4 x5 x8 x9 x"37 x38 x3 4 x5 x8 x9 x"13 x38 x3 4 x5 x8 x9 x38 x39 x40	x12 x13 x14 x16 x18 x20 x22 x24 x26 x28 x31 x38 x39 x40 2 x13 x14 x15 x17 x19 x21 x24 x26 x28 x31 x38 x39 x40 2 x13 x14 x16 x18 x20 x22 x23 x25 x27 x31 x38 x39 x40 2 x13 x14 x15 x17 x19 x21 x23 x25 x27 x31 x38 x39 x40 0 x"43 x"44 39 x40 39 x40 39 x40 0 x"45		
3	Количество одночленов в многочлене вероятностной функции			23	23			
4	Многочлен вероятностной функции возникновения ПА СФИ			Этот мне пользова	огочлен можно п ателя ПК АСМ С	юсмотреть на странице "Отчет" интерфейса ЗМА или в файле rezacm.lst.		
5	Вероятность не возникно- вения проектной аварии СФИ			$Q_{\pi_A}(10)$	$Q_{\Pi A}(100) = 0.977984815577 = 1 - 0.022015184423$			
6	Средняя наработка до воз- никновения проектной ава- рии СФИ			для немонотонных моделей не вычисляется				
7	$\begin{array}{c} \mathbb{N}_{\mathbb{P}} \\ \mathbb{P}_{J\Pi} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \end{array}$	Значимость 0.98077985 0.98001678 0.97891561 0.97900027 0.97938134 0.0 0.0 0.97891561 0.97891561 0.97891561 0.97346587 0.97346587 0.97346587 0.97346587 0.97346587 0.97346587 0.07408343 0.01970053 0.01970053 0.01970053 0.01969031 0.01969031 0.01969031 0.01969031 0.01969031 0.01969031 0.01963318 0.01963318 0.01963318 0.01963318 0.01963318 0.01963318 0.01963318 0.01963318 0.01963318 0.01973805 0.01245282 0.01245282 0.01245282 0.01252750 0.01252750	Отрин -0.977 -0.977 -0.977 -0.977 -0.977 -0.977 -0.977 -0.977 -0.977 -0.977 -0.977 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.977 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.971 -0.019 -0.012	ательный аклад 98482 98482 98482 98482 98482 98482 98482 98482 98482 98482 61553 61553 61553 61553 52324 61553 58840 58853 682555 682555555555555555555555555555555555555	Положительный вклад 0.00279504 0.00023196 0.00093079 0.00101546 0.00139652 0.0 0.0 0.0 0.00093079 0.00093079 0.00093079 0.00093079 0.00185034 0.00185034 0.00185034 0.00185034 0.00185034 0.0001642 0.000246791 0.00001642 0.00004477 0.000011213 0.00001213 0.00004477 0.000014964 0.00004477 0.000014964 0.00004740 0.00004740 0.00002029 0.00002029 0.00002029	Наименование элемента Кран мостовой Лифт грузовой Кран подвесной электрический Тележка специальная Тележка портальная Сист. контроля конструктивных параметров Установка вакуумирования систем изделий Спец. вентиляция помещения сборки Электрическая часть спец. вентиляции каньона Насос (ЦНГ-702М) и оборудование BBЧ Приборы BBЧ Стойка VX-04P Стойка VX-04P Стойка питания БНВ3-05 КСП-4 КСП-4 КСП-4 Чистотомер Ч3-54 Частотомер Ч3-54 Частотомер Ч3-54 Частотомер Ч3-54 Частотомер Ч3-54		
	31 32	-0.00863309 0.0	0.0086	52324	-0.00000985	Источник питания Сигнализатор ДРГ-1М-03 в хранилише		

	33	0.0	0.0	0.0	Сигнализатор ДРГ-1М-03 в хранилище
	37	-0.00863309	0.00862324	-0.00000985	Аварийная защита
	38	0.97910187	-0.97798482	0.00111706	Несущие конструкции: фундамент, стены, и др.
	39	0.97891561	-0.97798482	0.00093079	Ж.б колодцы для хранения ЗРИ
	40	0.97910187	-0.97798482	0.00111706	Радионуклидные источники
	43	-0.00003275	0.00003268	-0.00000007	Система аварийной сигнализации на участке
	44	-0.00001788	0.00001781	-0.00000007	Система сигнализации стенда ХИ (№125)
	45	-0.00864295	0.00862324	-0.00001971	Оборудование управления перемещением КГ

Результаты решения обратной задачи говорят о непротиворечивости и согласованности процедур прямого и обратного моделирования и расчетов в ПК АСМ СЗМА вероятностей возникновения и невозникновения проектной аварии рассматриваемого СФИ.

<u>Пример 1.3. Расчет вероятности возникновения и локализации запроектной</u> аварийной ситуации СФИ

{Проекты.Тест_1.Пример_1_3.Пример_1_3_локализация_ЗАС }

В данном примере требуется определить вероятность $P_{\text{Локализации ЗАС}}(t)$ возникновения запроектной аварийной ситуации СФИ (самоподдерживающейся цепной реакции деления) и ее локализации системами ПАЗ и КГ (сведение к проектной аварии) на интервале t = 100 час. заданной наработки.

Анализ функциональной структуры (см. Рис. 1) и описания технологического процесса, реализованного в рассматриваемой СФИ (см. §1.1, п.8 и п.9), позволяет заключить:

- Сигнализаторы системы ПАЗ (элементы 43 и 44) определяют факт возникновения запроектной аварийной ситуации (ЗАС) (самоподдерживающейся цепной реакции деления, вследствие отказов Установки ВВЧ и Блока физических измерений). На СФЦ (см. Рис. 2) это условие представляется инверсным выходом y₃₆ фиктивной вершины 36.
- Для успешной локализации возникшей запроектной аварийной ситуации должны безотказно выполнить свои функции подсистемы ПАЗ (элементы 43, 44, 37) и Перемещения КГ (элементы 45, 13 и 31). На СФЦ (см. Рис. 2) это условие представляется прямым выходом у₅₄ фиктивной вершины 54.

Сказанное позволяет задать следующий логический критерий возникновения и локализации запроектной аварийной ситуации СФИ

$$Y_{\Pi \sigma \kappa a \pi u 3 a q u u 3 A C} = \overline{y}_{36} \cdot y_{54} = y'' 36 y 54.$$
⁽⁵⁾

Для решения данной задачи достаточно ввести логический критерий (5) и наработку t = 100 час. в ПК АСМ СЗМА . Полученные результаты приведены в Табл. 6.

№ п/п	Наименование		Результат			
1	Количество конъюнкций логической функции Лока- лизации ЗАС	58	58			
2	Логическая функция лока- лизации ЗАС	$\begin{array}{r} Y_{3ac} = x''I \\ x''I0 xI3 x \\ xI3 x''23 x \\ xI3 x''24 x \\ xI3 x''24 x \\ xI3 x''24 x \\ xI3 x''24 x \\ xI3 x''25 x \\ xI3 x''25 x \\ xI3 x''26 x \\ xI3 x''16 x \\ xI3 x''17 x \\ xI3 x'$	$Y_{3ac} = x'' 11 x 13 x 31 x 37 x 44 x 45$ $x 13 x'' 19 x'' 20 x 31 x 37 x 43 x 45$ $x'' 10 x 13 x 31 x 37 x 44 x 45$ $x 13 x'' 20 x'' 21 x 31 x 37 x 43 x 45$ $x 13 x'' 23 x'' 24 x 31 x 37 x 44 x 45$ $x 13 x'' 15 x'' 22 x 31 x 37 x 43 x 45$ $x 13 x'' 24 x'' 25 x 31 x 37 x 44 x 45$ $x 13 x'' 17 x'' 22 x 31 x 37 x 43 x 45$ $x 13 x'' 24 x'' 27 x 31 x 37 x 44 x 45$ $x 13 x'' 17 x'' 22 x 31 x 37 x 43 x 45$ $x 13 x'' 24 x'' 27 x 31 x 37 x 44 x 45$ $x 13 x'' 19 x'' 22 x 31 x 37 x 43 x 45$ $x 13 x'' 24 x'' 27 x 31 x 37 x 44 x 45$ $x 13 x'' 19 x'' 22 x 31 x 37 x 43 x 45$ $x 13 x'' 25 x'' 26 x 31 x 37 x 44 x 45$ $x 13 x'' 19 x'' 22 x 31 x 37 x 44 x 45$ $x 13 x'' 25 x'' 28 x 31 x 37 x 44 x 45$ $x 13 x'' 10 x'' 12 x'' 22 x 31 x 37 x 44 x 45$ $x 13 x'' 27 x'' 28 x 31 x 37 x 44 x 45$ $x 13 x'' 24 x'' 25 x 31 x 37 x 44 x 45$ $x 13 x'' 14 x 31 x 37 x 44 x 45$ $x 13 x'' 24 x'' 25 x 31 x 37 x 43 x 45$ $x 13 x'' 16 x'' 17 x 31 x 37 x 44 x 45$ $x 13 x'' 24 x'' 25 x 31 x 37 x 43 x 45$ $x 13 x'' 16 x'' 17 x 31 x 37 x 44 x 45$ $x 13 x'' 24 x'' 27 x 31 x 37 x 43 x 45$ $x 13 x'' 16 x'' 17 x 31 x 37 x 44 x 45$ $x 13 x'' 24 x'' 27 x 31 x 37 x 43 x 45$ $x 13 x'' 16 x'' 17 x 31 x 37 x 44 x 45$ $x 13 x'' 24 x'' 27 x 31 x 37 x 43 x 45$ $x 13 x'' 16 x'' 17 x 31 x 37 x 44 x 45$ $x 13 x'' 24 x'' 27 x 31 x 37 x 43 x 45$ $x 13 x'' 16 x'' 19 x 31 x 37 x 44 x 45$ $x 13 x'' 24 x'' 27 x 31 x 37 x 43 x 45$ $x 13 x'' 16 x'' 19 x 31 x 37 x 44 x 45$ $x 13 x'' 16 x'' 17 x 31 x 37 x 43 x 45$ $x 13 x'' 16 x'' 19 x 31 x 37 x 44 x 45$ $x 13 x'' 16 x'' 17 x 31 x 37 x 43 x 45$			
3	Количество одночленов в многочлене вероятностной функции Покализации ЗАС	346				
4	Многочлен вероятностной функции Локализации ЗАС	Этот мн пользова	Этот многочлен можно посмотреть на странице "Отчет" интерфейса пользователя ПК АСМ СЗМА или в файле rezacm.lst.			
5	Вероятность возникновения и локализации запроектной аварийной ситуации	Р _{локализа}	$P_{\text{Локализации ЗАС}}(100) = 0.008740287705$			
6	Средняя наработка до воз- никновения и локализации запроектной аварийной си- туации	для немо	для немонотонных моделей не вычисляется			
7	№ Значимость Отр Эл 3.00 0.0	Значимо ицательный вклад	сти и вклады эл Положительный вклад 0.0	ементов СФИ Наименование элемента Кран мостовой		
	2 0.0 0.0		0.0	Лифт грузовой		

Табл. 6. Результаты расчета вероятности возникновения и локализации запроектной аварийной ситуации СФИ

	3	0.0	0.0	0.0	Кран подвесной электрический
	4	0.0	0.0	0.0	Тележка специальная
	5	0.0	0.0	0.0	Тележка портальная
	6	0.0	0.0	0.0	Система контроля конструктивных параметров
	7	0.0	0.0	0.0	Установка вакуумирования систем изделий
	8	0.0	0.0	0.0	Спец. вентиляция помещения сборки
	9	0.0	0.0	0.0	Электрическая часть спец. вентиляции каньона
	10	-0.98667943	0.98480397	-0.00187546	Насос (ЦНГ-702М) и оборудование ВВЧ
	11	-0.98667943	0.98480397	-0.00187546	Приборы ВВЧ
	12	-0.98667943	0.98480397	-0.00187546	Стойка УХ-04Р
	13	0.00875693	-0.00874029	0.00001664	Стойка питания
	14	-0.98730537	0.98480397	-0.00250141	Блок питания БНВЗ-05
	15	-0.01996794	0.01985429	-0.00011365	КСП-4
	16	-0.01996794	0.01985429	-0.00011365	КСП-4
	17	-0.01989967	0.01985429	-0.00004538	ЗИИ-2Р
	18	-0.01989967	0.01985429	-0.00004538	ЗИИ-2Р
	19	-0.01995758	0.01985429	-0.00010329	СПУ-1-1М
	20	-0.01995758	0.01985429	-0.00010329	СПУ-1-1М
	21	-0.02000597	0.01985429	-0.00015167	Частотомер ЧЗ-54
	22	-0.02000597	0.01985429	-0.00015167	Частотомер ЧЗ-54
	23	-0.01264932	0.01260128	-0.00004804	CHM-12
	24	-0.01264932	0.01260128	-0.00004804	CHM-12
	25	-0.01262185	0.01260128	-0.00002057	АКС-01С
	26	-0.01262185	0.01260128	-0.00002057	AKC-01C
	27	-0.01269755	0.01260128	-0.00009627	Частотомер ЧЗ-54
	28	-0.01269755	0.01260128	-0.00009627	Частотомер ЧЗ-54
	31	0.00875027	-0.00874029	0.00000998	Источник питания
	32	0.0	0.0	0.0	Сигнализатор ДРГ-1М-03 в хранилище
	33	0.0	0.0	0.0	Сигнализатор ДРГ-1М-03 в хранилище
	37	0.00875027	-0.00874029	0.00000998	Аварийная защита
	38	0.0	0.0	0.0	Несущие конструкции: фундамент, стены, и др.
	39	0.0	0.0	0.0	Ж.б колодцы для хранения ЗРИ
	40	0.0	-0.0	0.0	Радионуклидные источники
	43	0.00003320	-0.00003313	0.00000007	Система аварийной сигнализации на участке
	44	0.00001812	-0.00001805	0.00000007	Система сигнализации стенда ХИ (№125)
	45	0.00876027	-0.00874029	0.00001998	Оборудование управления перемещением КГ

Для подтверждения корректности работы ПК АСМ СЗМА полученный результат $P_{\text{Локализации ЗАС}}(100) = 0.008740287705$ сопоставляется с аналитическим расчетом вероятности возникновения и локализации запроектной аварии СФИ.

 Вероятности безотказной работы элементов, которые (согласно СФЦ на Рис. 2 и ЛКФ (5)) влияют на данное событие:

№ эл-та	Тоі [год]	t [час] (наработка)	Pi	№ эл- та	Тоі [год]	t [час] (наработка)	Pi
10	6	100	0.998099	22	1.5	100	0.992419
11	6	100	0.998099	23	3	100	0.996202
12	6	100	0.998099	24	3	100	0.996202
13	6	100	0.998099	25	7	100	0.998371
14	4.5	100	0.997466	26	7	100	0.998371
15	2	100	0.994308	27	1.5	100	0.992419
16	2	100	0.994308	28	1.5	100	0.992419
17	5	100	0.997719	31	10	100	0.998859
18	5	100	0.997719	37	10	100	0.998859
20	2.2	100	0.994825	43	5.5	100	0.997927
21	1.5	100	0.992419	44	3	100	0.996202
19	2.2	100	0.994825	45	5	100	0.997719

2. Вероятности безотказности и отказа фрагментов СФИ, определяющих событие возникновения и локализации запроектной аварии, составляют:

$$\begin{split} p(y58) &= p_{10}p_{11} = 0.996202055; \\ p(y14) &= p_{14}p_{12} = 0.995570469; \\ p(y21) &= p_{21}p_{19}p_{17}p_{15} = 0.979424531; \\ p(y22) &= p_{22}p_{20}p_{18}p_{16} = 0.979424531; \\ p(y29) &= p(y21) + p(y22) - p(y21)p(y22) = 0.99957665; \\ p(y27) &= p_{27}p_{25}p_{23} = 0.98703842; \\ p(y28) &= p_{28}p_{26}p_{24} = 0.98703842; \\ p(y30) &= p(y27) + p(y28) - p(y27)p(y28) = 0.999831997; \\ p(y"36) &= q(y36) = 1 - p(y58)p(y29)p(y30)p(y14) = 0.008797079; \\ p(y45) &= p_{45}p_{13}p_{31} = 0.99468692; \\ p(y37) &= p_{37}(p_{43} + p_{44} - p_{43}p_{44}) = 0.998851233; \\ p(y54) &= p(y37)p(y45) = 0.993544256. \end{split}$$

3. Окончательный аналитический расчет вероятности возникновения и локализации запроектной аварийной ситуации СФИ (см. Рис. 2 и ЛКФ (5))

$$P_{\text{локализации 3AC}}(100 \text{ час}) = q(y36)p(y54) =$$

= 0.008797079 * 0.993544256 = 0.008740288

Полученный результат аналитического расчета вероятности возникновения и локализации запроектной аварийной ситуации СФИ точно совпадает с решением этого примера ПК АСМ СЗМА (см. Табл. 6, п.5).

Контрольное решение противоположной задачи

{Проекты. Тест 1. Пример 1 3. Пример 1 3 не локализация ЗАС }

по критерию

$$\overline{Y}_{Jokanusauuu \, 3AC} = y_{36} \vee \overline{y}_{54} = y_{36} + y''_{54} \tag{6}$$

приводит к вычислению с помощью ПК АСМ СЗМА вероятности

$$Q_{\text{Локализации 3AC}}(100) = 0.991259712295 \tag{7}$$

события невозникновения или нелокализации запроектной аварийной ситуации СФИ (ФРС – 9 конъюнкций, ВФ – 23 одночлена). Значение (7) является точным дополнением вероятности $P_{Локализации 3AC}(100) = 0.008740287705$. Это подтверждает непротиворечивость моделирования и расчетов на ПК ACM C3MA данного примера.

<u>Пример 1.4. Моделирование и расчет вероятности</u> возникновения запроектной аварии СФИ

{Проекты. Тест_1. Пример_1_4. Пример_1_4_возникновение_3А }

В данном примере требуется определить вероятность $P_{3A}(t)$ возникновения запроектной аварии СФИ (нелокализованной самоподдерживающейся цепной реакции деления) на интервале t = 100 час. заданной наработки.

Анализ функциональной структуры (см. Рис. 1) и описания технологического процесса, реализованного в рассматриваемой СФИ (см. §1.1, п.8, п.9 и п.10), позволяет выделить условия возникновения запроектной аварии (ЗА):

- Условиями возникновения запроектной аварийной ситуации (самоподдерживающейся цепной реакции деления) являются отказы Установки ВВЧ или хотя бы одного из каналов Блока физических измерений. На СФЦ (см. Рис. 2) эти условия представляются инверсным выходом y₃₆ вершины 36.
- 2. Условие нелокализации запроектной аварийной ситуации представляется инверсным выходом \overline{y}_{54} фиктивной вершины 54.

Сказанное позволяет задать следующий логический критерий возникновения запроектной аварии СФИ

$$Y_{_{34}} = \overline{y}_{_{36}} \cdot \overline{y}_{_{54}} = y'''_{36}y''_{54} \tag{8}$$

Для решения данной задачи в ПК АСМ СЗМА вводится логический критерий (8), наработка t = 100 час. и включается кнопка "Моделирование и расчет". Результаты решения этой задачи ПК АСМ СЗМА, выводимые на экран дисплея, изображены на Рис. 5.

Рис. 5. Решение примера моделирования и расчетов вероятности возникновения запроектной аварии СФИ на ПК АСМ СЗМА

Результаты моделирования и расчета данного примера, сохраненные в файле rezacm.lst, приведены в Табл. 7.

Табл. 7. Результаты моделирования и расчета вероятности возникновения запроектной авари	И
СФИ	

№ п/п	Наименование	Результат
1	Количество конъюнкций логической функции ЗА	89
2	Логическая функция ЗА	Полностью эту функцию можно посмотреть на странице "Отчет" интерфейса пользователя ПК АСМ СЗМА или в файле rezacm.lst. Ниже приведены только короткие (не более двух отказов, но самые вероятные и опасные) конъюнкции ФРС запроектной аварии. $Y_{34} =$
3	Количество одночленов в многочлене вероятностной	521

	функции З	рункции ЗА					
	Многочлен вероятностной		й Эт	от мног	очлен можно пос	смотреть на странице "Отчет" интерфейса	
4	функции Л	окализации ЗА	Спо	пользователя ПК ACM C3MA или в файле rezacm.lst.			
	Вероятнос	ть возникновен	ת ואו	B (100) 0.0020(05(1000			
5	запроектно	и аварии	P	$_{3A}(100)$) = 0.003069	564202	
-	Срания	оп изирии поботка по вол					
(средняя на	аработка до воз	-				
0	никновени	я запроектнои	ОЛ	я немоно	отонных мооелег	и не вычисляется	
	аварии						
			Зна	чимост	и и вклалы элем	иентов СФИ	
	№ Эл	Значимость	Отрица	гельный	Положительный	Наименование элемента	
	1	0.0	0.0	Тад	вклад	Кран мосторой	
	2	0.0	0.0		0.0	Пифт гругорой	
	3	0.0	0.0		0.0	Улица грузовой	
	3	0.0	0.0		0.0	Тележка специальная	
	5	0.0	0.0		0.0	Тележка специальная	
	6	0.0	0.0		0.0	Система контроля конструктивных параметров	
	7	0.0	0.0		0.0	Установка вакуумирования систем изделий	
	8	0.0	0.0		0.0	Спец вентилящия помещения сборки	
	9	0.0	0.0		0.0	Электрическая часть спец. вентилянии каньона	
	10	-0.00339263	0.00338618		-0.00000645	Насос (ПНГ-702М) и оборудование ВВЧ	
	11	-0.00339263	0.00338	618	-0.00000645	Приборы ВВЧ	
	12	-0.00339263	0.00338	618	-0.00000645	Стойка УХ-04Р	
	13	-0.99882899	0.99693044		-0.00189855	Стойка питания	
	14	-0.00339478	0.00338618		-0.000086	Блок питания БНВЗ-05	
	15	-0.00006866	0.00006827		-0.00000039	КСП-4	
	16	-0.00006866	0.00006827		-0.00000039	КСП-4	
7	17	-0.00006842	0.00006827		-0.00000016	3ИИ-2Р	
'	18	-0.00006842	0.00006	827	-0.00000016	ЗИИ-2Р	
	19	-0.00006862	0.00006	827	-0.00000036	СПУ-1-1М	
	20	-0.00006862	0.00006	827	-0.00000036	СПУ-1-1М	
	21	-0.00006879	0.00006	827	-0.00000052	Частотомер ЧЗ-54	
	22	-0.00006879	0.00006	827	-0.00000052	Частотомер ЧЗ-54	
	23	-0.00004349	0.00004	333	-0.00000017	CHM-12	
	24	-0.00004349	0.00004	333	-0.00000017	CHM-12	
	25	-0.00004340	0.00004	333	-0.00000007	AKC-01C	
	26	-0.00004340	0.00004	333	-0.00000007	AKC-01C	
	27	-0.00004366	0.00004	333	-0.00000033	Частотомер ЧЗ-54	
	28	-0.00004366	0.00004	333	-0.00000033	Частотомер ЧЗ-54	
	31	-0.99806913	0.99693	044	-0.0011387	Источник питания	
	32	0.0	0.0		0.0	Сигнализатор ДРГ-1М-03 в хранилище	
	33	0.0	0.0	000	0.0	Сигнализатор ДРГ-1М-03 в хранилище	
	37	-0.008/502/	0.008/4	029	-0.00000998	Аварииная защита	
	38	0.0	0.0		0.0	несущие конструкции: фундамент, стены, и др.	
	39	0.0	0.0		0.0	м. о колодцы для хранения ЗРИ Родинично моточности с	
	40	0.0000222	0.0	212	0.0	гадионуклидные источники	
	43	-0.0000332	0.00003	<u>805</u>	-0.00000007	Система аварииной сигнализации на участке	
	44	-0.00001812	0.00001	020	-0.00000007	Оборудорация управления нерохононной ИГ	
	43	-0.008/002/	0.000/4	047	-0.00001996	Оборудование управления перемещением КГ	

На Рис. 6 изображена диаграмма положительных вкладов тех элементов СФИ (см. страницу "Диаграммы" интерфейса ПК АСМ СЗМА), увеличение безотказности которых в наибольшей степени уменьшают вероятность возникновения запроектной аварии. Из диаграмм и данных, приведенных в Табл. 7, видно, что наиболее опасными являются одиночные отказы нерезервированных элементов 31 и 13 (системы электроснабжения объекта) и 45 (КГ). Следовательно, мероприятия по увеличению безотказности указанных элементов должны обеспечить наибольшее уменьшение вероятности возникновения ЗА СФИ.

Рис. 6. Диаграмма положительных вкладов элементов

Полученные с помощью ПК АСМ СЗМА оценки роли надежности элементов в обеспечении безаварийности СФИ соответствуют (не противоречат) структуре СФИ и физическому смыслу процессов, приводящих к запроектной аварии.

Контрольное решение противоположной задачи (моделирования и расчета вероятности невозникновения ЗА)

{*Проекты.Tecm_1.Пример_1_4.Пример_1_4_не_6озникновение_3А* } выполненное ПК АСМ СЗМА по критерию

$$\overline{Y}_{34} = y_{36} \lor y_{54} = y_{36} + y_{54} \tag{9}$$

приводит к вычислению вероятности

$$Q_{34}(100) = 0.996930435798.$$
 (10)

Данное событие невозникновения запроектной аварии СФИ определяется логической ФРС, состоящей из 62 конъюнкции, и многочленом ВФ, содержащим 355 одночленов. Значение (10) является точным дополнением вероятности $P_{_{34}}(100) = 0.003069564202$ (см. Табл. 7, п.5), что подтверждает непротиворечивость моделирования и расчетов на ПК АСМ СЗМА данного примера.

<u>Пример 1.5. Оценка мероприятий по снижению</u> <u>вероятности запроектной аварии СФИ</u>

Полученные в предыдущем примере результаты (см. Табл. 7, п.7 и Рис. 6) позволяют заключить, что увеличение надежности элементов 13 и 31 системы

электроснабжения объекта должны в наибольшей степени снизить вероятность возникновения запроектной аварии СФИ. В данном примере выполняется оценка степени уменьшения вероятности возникновения запроектной аварии СФИ в случае раздельного резервирования (дублирования) элементов 13 и 31.

Учет влияния резервирования элементов 13 и 31 в ПК АСМ СЗМА можно выполнить в ПК АСМ СЗМА тремя различными способами.

1. Прямое структурное моделирование.

{Проекты.Tecm_1.Пример_1_5.Пример_1_5_структурное }

В этом случае дублирование элементов 13 и 31 непосредственно указывается в СФЦ системы с помощью дополнительных функциональных вершин с номерами 132 и 312 соответственно, а их средние наработки до отказа $T_{o_{-132}} = 6$, $T_{o_{-312}} = 10$ записываются в таблицу параметров. На Рис. 7 приведены результаты моделирования и расчета нового значения вероятности запроектной аварии СФИ.

Рис. 7. Прямое структурное моделирование резервных групп

Как видно из рис.7, в результате дублирования элементов 13 и 31 вероятность возникновения запроектной аварии уменьшилась до
$P_{_{3A}}(100) = 0.000035058955$, т.е. в сравнении с предыдущим результатом (см. Табл. 7, п.5: $P_{_{3A}}(100) = 0.003069564202$) сократилась на два порядка. Существенно изменились и оценки значимостей и вкладов элементов.

Рис. 8. Диаграмма положительных вкладов элементов

Как видно из Рис. 8, теперь (после резервирования элементов 13 и 31) наибольший вклад в дальнейшее снижение вероятности запроектной аварии СФИ может внести повышение безотказности КГ 45.

2. Эквивалентирование.

{Проекты. Тест_1. Пример_1_5. Пример_1_5_эквивалентирование }

Каждая функциональная вершина в СФЦ может быть заменена эквивалентированной вершиной, с помощью которой представляется СФЦ декомпозированной односвязной подсистемы объемом до 100 элементов. На Рис. 9 резервные группы элементов 13 и 31 представлены двумя эквивалентированными вершинами с теми же номерами 13 и 31. Каждая из эквивалентированных вершин (декомпозированных подсистем) содержит по два дублированных элемента. В результате моделирования на основе данного варианта СФЦ СФИ, ПК АСМ СЗМА формирует тот же результат уменьшения вероятности возникновения запроектной аварии до величины $P_{34}(100) = 0.000035058955$.

Рис. 9. Эквивалентирование резервных групп

На Рис. 10 приведена диаграмма положительных вкладов элементов СФИ после эквивалентирования резервных групп 13 и 31.

Рис. 10. Диаграмма положительных вкладов элементов

Как видим, полученные результаты совпадают с предыдущим решением данного примера способом прямого структурного моделирования (см. Рис.10 и Рис. 8).

3. Применение параметров кратности элементов.

{Проекты. Тест_1. Пример_1_5. Пример_1_5_кратность }

Этот способ может использоваться в тех случаях, когда резервируемую группу составляют однотипные элементы с одинаковыми собственными вероятностными и другими параметрами. Правила применения признаков кратности описаны в § 5 Инструкции пользователя ПК АСМ СЗМА (см. приложение 3). В нашем примере для учета дублирования элементов 13 и 31 (с сохранением прежних значений безотказности элементов в группах) достаточно установить признак кратности "-2" в столбец «Кратн.» таблицы параметров элементов. На Рис. 11 приведено решение данного примера ПК АСМ СЗМА с использованием параметров кратности элементов 13 и 31.

Рис. 11. Применение параметров кратности

Вероятность возникновения запроектной аварии в данном случае также составила $P_{34}(100) = 0.000035058955$. Таким образом, все три разных способа учета резервирования групп элементов 13 и 31 в ПК АСМ СЗМА дали одинаковые результаты снижения вероятности запроектной аварии СФИ.

Пример 1.6. Учет собственного времени работы группы элементов СФИ

{Проекты. Тест_1. Пример_1_6 }

Данный пример демонстрирует возможность решения с помощью ПК ACM СЗМА задач моделирования и расчета надежности систем, в которых время работы отдельных элементов t_{ri} меньше заданной общей наработки t исследуемой системы в целом (см. OB, §2.1.8).

В данном примере используются условия ранее рассмотренного Примера 1.1 моделирования и расчета вероятности $P_{c\phi H}(t)$ безотказного функционирования СФИ (см. §3.1, Пример 1.1). Как и в Примере 1.1 заданный параметр общей наработки t = 1000 часов сохраняется. Но в Примере 1.1 это значение наработки относилось как к СФИ в целом, так и к каждому ее элементу.

В данном примере полагаем, что исследуемый СФИ в целом функционирует те же t = 1000 часов. При этом элементы 1-9, 32, 33 и 40 используются весь период функционирования СФИ, и их наработка составляет те же 1000 часов.

Остальные элементы 10-28, 31, 37, 43, 44 и 45 охватывают ту часть СФИ, которая обеспечивает и непосредственно выполняет физические измерения изделия, а также реализуют функции ПАЗ. Поэтому их собственная наработка t_{ri} составляет только 100 часов из общей 1000 часов наработки СФИ.

Для учета указанной особенности функционирования элементов в СФИ, в столбец "Tri" таблицы параметров элементов (см. OB, рис.2, п.5) записываются значения 100 собственного времени работы элементов 10-28, 31, 37, 43, 44 и 45 в часах. Более полно правила ввода параметров собственного времени работы элементов приведены в Инструкции пользователя (приложение 3, §5 и §6).

На панели режима "Вероятностно-временной расчет" включается признак "Учет собственного времени работы элементов" (см. ОВ, рис.2, п.5) и вводится логический критерий (1)

$$Y_{C\phi II} = y_{49} \cdot y_{34} \cdot y_{51} \cdot y_{52} = y49y34y51y52.$$

Результаты решения этого примера, приведены в Табл.8.

Колтчесткой функции работосособност. СФИ 4 2 Торическая функции работосособност. СФИ Усфи – к1 x2 x3 x4 x5 x0 x7 x8 x9 x10 x11 x12 x13 x14 x16 x18 x20 x22 x24 x26 x28 x31 x32 x32 x33 x38 x3 x40 x45 vx1 x2 x3 x4 x5 x0 x7 x8 x9 x10 x11 x12 x13 x14 x15 x17 x19 x21 x24 x26 x28 x31 x32 x32 x38 x38 x40 x45 vx1 x2 x3 x4 x5 x0 x7 x8 x9 x10 x11 x12 x13 x14 x15 x17 x19 x21 x24 x26 x23 x31 x32 x32 x32 x32 x31 x38 x30 x40 x45 vx1 x2 x3 x4 x5 x0 x7 x8 x9 x10 x11 x12 x13 x14 x15 x17 x19 x21 x24 x26 x25 x27 x31 x32 x33 x38 x30 x40 x45 vx1 x2 x3 x4 x5 x0 x7 x8 x0 x10 x11 x12 x13 x14 x15 x17 x19 x21 x23 x25 x27 x31 x32 x33 x38 x30 x40 x45 vx1 x2 x3 x4 x5 x0 x7 x8 x0 x10 x11 x12 x13 x14 x15 x17 x19 x21 x23 x25 x27 x31 x32 x33 x38 x30 x40 x45 3 Колличество однолисненов вероятностной функции работоспособно- cru CФИ 9 4 Многочлен вероятностной функции работоспособно- cru CФИ Pcфu – p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p12 p3 p12 p3 p2 p3 p12	№ п/п	Наименование]	Резуль	ьтат			
2 Гефи = xl x2 3x 4x 3x 6x 7x 8x 9x 101 k12 x13 x14 x16 k2 x02 x22 x42 k23 k23 x23 x23 x23 x23 x23 x23 x23 x23 x23 x	1	Количество конъюнкц логической функции р тоспособности СФИ	ий рабо-	4				
3 Количество одночленов в многочлене вероятностной функции работоспособно- сти СФИ 9 4 Многочлен вероятностной функции работоспособно- сти СФИ Рефи – p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p13 p3 p3 p3 p3 p40 p43 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p17 p19 p21 p21 p21 p22 p22 p32 p32 p31 p32 p33 p38 p39 p40 p43 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p17 p18 p12 p31 p32 p33 p38 p33 p40 p43 + p12 p3 p4 p3 p3 p4 p3 p4 p12 p12 p3 p4 p3 p3 p4 p3 p4 p12 p12 p3 p4 p3 p4 p3 p4 p3 p4 p12 p12 p3 p4 p3 p4 p3 p4 p12 p12 p3 p4 p3 p4 p3 p4 p3 p4 p12 p12 p3 p4 p3 p4 p3 p4 p4 p3 p4 p2 p3 p4 p3 p4 p4 p3 p4 p12 p12 p3 p4 p3 p4 p3 p4 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p3 p4 p3 p5 p7 p8 p4 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p3 p4 p3 p5 p7 p8 p4 p10 p11 p2 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p3 p4 p3 p5 p7 p8 p4 p10 p11 p2 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p3 p4 p3 p5 p7 p8 p3 p10 p12 p12 p12 p12 p21 p24 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p4 5 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p4 5 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p32 p24 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p4 p5 p6 p7 p8 p4 p10 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p32 p24 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p4 p5 p6 p7 p8 p4 p10 p12 p12 p12 p12 p12 p14 p15 p16 p	2	Логическая функция р тоспособности СФИ (н чайшие пути успешно функционирования)	або- крат- го	Ycфи = : x32 x33 ; x24 x26 ; x16 x18 ; x11 x12 ;	x1 x2 x3 x4 x5 x6 x7 x38 x39 x40 x45 ∨ x x28 x31 x32 x33 x38 x20 x22 x23 x25 x27 x13 x14 x15 x17 x19	7 x8 x9 x10 x11 x12 x13 x14 x16 x18 x20 x22 x24 x26 x28 x31 1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x17 x19 x21 8 x39 x40 x45 v x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 7 x31 x32 x33 x38 x39 x40 x45 v x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 0 x21 x23 x25 x27 x31 x32 x33 x38 x39 x40 x45		
4 Рефи – рі рг да да рі рі ба ра рі	3	Количество одночлено многочлене вероятнос функции работоспособ сти СФИ	ов в тной бно-	9				
5Вероятность безотказного функционирования СФИ $P_{C\phiH}(1000 4ac) = 0.754146491813$ 6Средняя наработка до отка- за СФИ $T_{OC\phiH} = 0.219 cod = 1918 4ac$ Значимость Отрицательный Положитель- вклад $\frac{Ne}{2}$ 3начимостьОтрицательный Положитель- вклад10.775978990.754146490.0218325020.76996275-0.754146490.0218325030.76135487-0.754146490.007283840.76201359-0.754146490.0078670950.76498486-0.754146490.0078670950.76498480-0.754146490.0018383760.76280480-0.754146490.001838360.76280480-0.754146490.0072083870.7683215-0.754146490.0018383780.76135487-0.754146490.0012838390.76135487-0.754146490.0072083890.76135487-0.754146490.0012838390.76135487-0.754146490.0012808490.76135487-0.754146490.00128084100.75558269-0.754146490.00143620110.75558269-0.754146490.00143620120.75558269-0.754146490.00143620130.75558269-0.754146490.00143620110.75558269-0.754146490.00143620120.75558269-0.754146490.00143620130.75558269-0.754146490.0014362014 <th>4</th> <td colspan="3">Рсфи = р p31 p32 р p19 p21 р p12 p13 р p12 p13 р p23 p25 р p23 p25 р p23 p25 р p14 p15 р p23 p25 р p22 p23 р p10 p11 р p33 p38 р</td> <td>p1 p2 p3 p4 p5 p6 p p33 p38 p39 p40 p4 p24 p26 p28 p31 p3 p14 p16 p18 p20 p2 p9 p10 p11 p12 p13 p2 p3 p4 p5 p6 p7 p p27 p31 p32 p33 p3 p17 p19 p21 p23 p2 p8 p9 p10 p11 p12 p38 p39 p40 p45 - p p24 p25 p26 p27 p2 p12 p13 p14 p15 p1 p39 p40 p45</td> <td>7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 p22 p24 p26 p28 (5 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p17 (2 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 (2 p23 p25 p27 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 (3 p14 p15 p17 p19 p21 p23 p25 p27 p31 p32 p33 p38 p39 p40 p48 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 (8 p39 p40 p45 - p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 (4 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p45 - p1 p2 p3 p4 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p24 p26 p28 p31 p12 p14 p15 p16 p7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 p12 p24 p25 p26 p7 p28 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p13 p14 p15 p16 p7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 (8 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 (6 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p31 p32</td>	4	Рсфи = р p31 p32 р p19 p21 р p12 p13 р p12 p13 р p23 p25 р p23 p25 р p23 p25 р p14 p15 р p23 p25 р p22 p23 р p10 p11 р p33 p38 р			p1 p2 p3 p4 p5 p6 p p33 p38 p39 p40 p4 p24 p26 p28 p31 p3 p14 p16 p18 p20 p2 p9 p10 p11 p12 p13 p2 p3 p4 p5 p6 p7 p p27 p31 p32 p33 p3 p17 p19 p21 p23 p2 p8 p9 p10 p11 p12 p38 p39 p40 p45 - p p24 p25 p26 p27 p2 p12 p13 p14 p15 p1 p39 p40 p45	7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 p22 p24 p26 p28 (5 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p17 (2 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 (2 p23 p25 p27 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 (3 p14 p15 p17 p19 p21 p23 p25 p27 p31 p32 p33 p38 p39 p40 p48 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 (8 p39 p40 p45 - p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 (4 p25 p26 p27 p28 p31 p32 p33 p38 p39 p40 p45 - p1 p2 p3 p4 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p24 p26 p28 p31 p12 p14 p15 p16 p7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 p12 p24 p25 p26 p7 p28 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 p13 p14 p15 p16 p7 p8 p9 p10 p11 p12 p13 p14 p16 p18 p20 (8 p31 p32 p33 p38 p39 p40 p45 + p1 p2 p3 p4 p5 p6 p7 p8 p9 (6 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p31 p32		
6 Средняя наработка до отка- за СФИ $T_{OCDH} = 0.219 \ 200 = 1918 \ 4ac$ Значимость Отрицательный вклад Положитель- ный вклад 0.77597899 -0.75414649 0.02183250 Кран мостовой 2 0.76996275 -0.75414649 0.00183250 Кран мостовой 3 3 0.76135487 -0.75414649 0.00720838 Кран мостовой 3 5 0.76498486 -0.75414649 0.00720838 Сренная подвесной электрический 6 0.76201359 -0.75414649 0.00720838 Сренная подвесной электрический 6 0.7620480 -0.75414649 0.00720838 Спечема контроля конструктивных параметров 7 7 0.768682315 -0.75414649 0.00720838 Спец. вентиляция помещения сборки 9 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляция каньона 10 0.75558269 -0.75414649 0.00143620 Приборы ВВЧ 11 0.75558269 -0.75414649 0.00143620 Стейка питания 10	5	Вероятность безотказн функционирования С	юго ФИ	$P_{COH}(1000 uac) = 0.754146491813$				
7 Эл Значимость Отрицательный вклад Положитель- ный вклад Наименование элемента 1 0.77597899 -0.75414649 0.02183250 Кран мостовой 2 0.76996275 -0.75414649 0.00720838 Кран подвесной электрический 3 0.76135487 -0.75414649 0.00720838 Кран подвесной электрический 4 0.76201359 -0.75414649 0.00786709 Тележка специальная 5 0.76498486 -0.75414649 0.0085830 Система контроля конструктивных параметров 7 0.76865215 -0.75414649 0.00720838 Электрическая часть спец. вентиляция каньона 8 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляция каньона 10 0.75558269 -0.75414649 0.00720838 Электрическая часть спец. вентиляция каньона 11 0.75558269 -0.75414649 0.00120838 Электрическая часть спец. вентиляция каньона 12 0.75558269 -0.75414649 0.00143620 Приборы ВВЧ 12 0.75558269 -0.75414649 0.00143620	6	Средняя наработка до за СФИ	отка-	Τοςφι	, = 0.219 го	d = 1918 vac		
№ Значимость Огрищательный вклад Положитель- ный вклад Наименование элемента 1 0.77597899 -0.75414649 0.02183250 Кран мостовой 2 0.76996275 -0.75414649 0.01581626 Лифт грузовой 3 0.76135487 -0.75414649 0.00720838 Кран подвесной электрический 4 0.76201359 -0.75414649 0.00786709 Тележка специальная 5 0.76498486 -0.75414649 0.00865830 Система контроля конструктивных параметров 7 0.76863215 -0.75414649 0.00720838 Спец. вентиляция помещения сборки 9 0.76135487 -0.75414649 0.00720838 Спец. вентиляция и систем изделий 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование ВВЧ 11 0.75558269 -0.75414649 0.00143620 Паробры ВВЧ 11 0.75558269 -0.75414649 0.00143620 Паробры ВВЧ 12 0.75558269 -0.75414649 0.00143620 Стойка итания 13 0.75558269			3	начим	ости и вклады	і элементов СФИ		
1 0.77597899 -0.75414649 0.02183250 Кран мостовой 2 0.76996275 -0.75414649 0.01581626 Лифт грузовой 3 0.76135487 -0.75414649 0.00720838 Кран подвесной электрический 4 0.76201359 -0.75414649 0.00786709 Тележка специальная 5 0.76498486 -0.75414649 0.01083837 Тележка портальная 6 0.76280480 -0.75414649 0.00865830 Система контроля конструктивных параметров 7 0.76863215 -0.75414649 0.00720838 Система контроля конструктивных параметров 8 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00120838 Электрическая часть спец. вентиляции каньона 11 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование BBЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.0015353 Блок питания 14 </th <th></th> <th>№ Эл Значимость</th> <th>Отрицате вкла</th> <th>ельный 1д</th> <th>Положитель- ный вклад</th> <th>Наименование элемента</th>		№ Эл Значимость	Отрицате вкла	ельный 1д	Положитель- ный вклад	Наименование элемента		
2 0.76996275 -0.75414649 0.01581626 Лифт грузовой 3 0.76135487 -0.75414649 0.00720838 Кран подвесной электрический 4 0.76201359 -0.75414649 0.00786709 Тележка специальная 5 0.76498486 -0.75414649 0.01083837 Тележка портальная 6 0.76280480 -0.75414649 0.00865830 Система контроля конструктивных параметров 7 0.76683215 -0.75414649 0.00720838 Спец. вентиляция помещения сборки 9 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование BBЧ 11 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка Питания 14 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.7558269		1 0.77597899	-0.754146	549	0.02183250	Кран мостовой		
3 0.76135487 -0.75414649 0.00720838 Кран подвесной электрический 4 0.76201359 -0.75414649 0.00786709 Тележка специальная 5 0.76498486 -0.75414649 0.01083837 Тележка портальная 6 0.76280480 -0.75414649 0.00865830 Система контроля конструктивных параметров 7 0.76863215 -0.75414649 0.00720838 Система контроля конструктивных параметров 8 0.76135487 -0.75414649 0.00720838 Спец. вентиляция помещения сборки 9 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование BBЧ 11 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01529112 -0.01520409 0.00008703 КСП-4 16		2 0.76996275	-0.75414	649	0.01581626	Лифт грузовой		
4 0.76201359 -0.75414649 0.00786709 Тележка специальная 5 0.76498486 -0.75414649 0.01083837 Тележка портальная 6 0.76280480 -0.75414649 0.00865830 Система контроля конструктивных параметров 7 0.76863215 -0.75414649 0.01448566 Установка вакуумирования систем изделий 8 0.76135487 -0.75414649 0.00720838 Спец. вентиляция помещения сборки 9 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование BBЧ 11 0.75558269 -0.75414649 0.00143620 Приборы BBЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01529112 -0.01520409 0.00008703 КСП-4 17 0.01529112<		3 0.76135487	-0.75414	649	0.00720838	Кран подвесной электрический		
5 0.76498486 -0.75414649 0.01083837 Гележка портальная 6 0.76280480 -0.75414649 0.00865830 Система контроля конструктивных параметров 7 0.76863215 -0.75414649 0.01448566 Установка вакуумирования систем изделий 8 0.76135487 -0.75414649 0.00720838 Спец. вентиляция помещения сборки 9 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование BBЧ 11 0.75558269 -0.75414649 0.00143620 Приборы BBЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01520409 0.00008703 КСП-4 16 0.01520409 0.00008703 16 0.01520409 0.00008703 КСП-4 17 0.01523884 <		4 0.76201359	-0.75414	649	0.00786709	Тележка специальная		
6 0.76280480 -0.75414649 0.00885830 Система контроля конструктивных параметров 7 0.76863215 -0.75414649 0.01448566 Установка вакуумирования систем изделий 8 0.76135487 -0.75414649 0.00720838 Спец. вентиляция помещения сборки 9 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование BBЧ 11 0.75558269 -0.75414649 0.00143620 Приборы BBЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01520409 0.00008703 КСП-4 16 0.01520409 0.00008703 17 0.01523884 -0.01520409 0.00003475 3ИИ-2P 18 0.01528318 -0.01520409 0.00003475 3ИИ-2P 19 0.0152		5 0.76498486	-0./5414	649	0.01083837	Гележка портальная		
7 0.7000213 -0.75414049 0.01448300 Установка вакуумирования систем изделий 8 0.76135487 -0.75414649 0.00720838 Спец. вентиляция помещения сборки 9 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование ВВЧ 11 0.75558269 -0.75414649 0.00143620 Приборы ВВЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01529112 -0.01520409 0.00008703 КСП-4 16 0.01529112 -0.01520409 0.00008703 КСП-4 17 0.01523884 -0.01520409 0.00003475 3ИИ-2P 18 0.0152318 -0.01520409 0.00003475 3ИИ-2P 19 0.01528318 -0.01520409 0.00007910		0 0.76280480	-0./5414	649	0.00865830	Система контроля конструктивных параметров		
о 0.70132407 -0.73140499 0.007/20336 Спец. вентиляция помещения соорки 9 0.76135487 -0.75414649 0.00720838 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование ВВЧ 11 0.75558269 -0.75414649 0.00143620 Приборы ВВЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01529112 -0.01520409 0.00008703 КСП-4 16 0.01529112 -0.01520409 0.00008703 КСП-4 17 0.01523884 -0.01520409 0.00003475 3ИИ-2P 18 0.01528318 -0.01520409 0.00003475 3ИИ-2P 19 0.01528318 -0.01520409 0.00007910 СПУ-1-1M	7	/ U./0803213 9 0.76135497	-0./5414	049	0.01448300	установка вакуумирования систем изделии		
У 0.70132407 -0.7314042 0.00720336 Электрическая часть спец. вентиляции каньона 10 0.75558269 -0.75414649 0.00143620 Насос (ЦНГ-702М) и оборудование ВВЧ 11 0.75558269 -0.75414649 0.00143620 Приборы ВВЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01529112 -0.01520409 0.00008703 КСП-4 16 0.01529112 -0.01520409 0.00008703 КСП-4 17 0.01523884 -0.01520409 0.00003475 3ИИ-2P 18 0.01523884 -0.01520409 0.00003475 3ИИ-2P 19 0.01528318 -0.01520409 0.00007910 СПУ-1-1M		0 0./013548/	-0.754146	549	0.00720838	Спец. вентиляция помещения соорки		
10 0.75536207 -0.75414649 0.00143620 Париборы ВВЧ 11 0.75558269 -0.75414649 0.00143620 Приборы ВВЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01529112 -0.01520409 0.00008703 КСП-4 16 0.01529112 -0.01520409 0.00008703 КСП-4 17 0.01523884 -0.01520409 0.00003475 3ИИ-2P 18 0.01523884 -0.01520409 0.00003475 3ИИ-2P 19 0.01528318 -0.01520409 0.00007910 СПУ-1-1M		10 0.75558260	-0.754140	5/0	0.00720838	Электрическая часть спец. вентиляции каньона Насос (ПНГ-702М) и оборудование BBU		
11 0.75536207 -0.75414047 0.00143620 Приорра БВЧ 12 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 13 0.75558269 -0.75414649 0.00143620 Стойка УХ-04Р 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01529112 -0.01520409 0.00008703 КСП-4 16 0.01529112 -0.01520409 0.00008703 КСП-4 17 0.01523884 -0.01520409 0.00003475 3ИИ-2P 18 0.01523884 -0.01520409 0.00003475 3ИИ-2P 19 0.01528318 -0.01520409 0.00007910 СПУ-1-1M		11 0.75558260	-0.754140	5/0	0.00143020	Пасос (ЦП - /0219) и оборудование DD1		
12 0.75536207 -0.75414047 0.00145620 Стойка ух-очг 13 0.75558269 -0.75414649 0.00143620 Стойка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания 15 0.01529112 -0.01520409 0.00008703 КСП-4 16 0.01529112 -0.01520409 0.00008703 КСП-4 17 0.01523884 -0.01520409 0.00003475 ЗИИ-2Р 18 0.01523884 -0.01520409 0.00003475 ЗИИ-2Р 19 0.01528318 -0.01520409 0.00007910 СПУ-1-1M		12 0.75558260	-0.754140	5/0	0.00143020	Приооры ВВЧ Стойка VX-0/Р		
15 0.75536203 -0.75414649 0.00145020 Стояка питания 14 0.75606203 -0.75414649 0.00191553 Блок питания БНВ3-05 15 0.01529112 -0.01520409 0.00008703 КСП-4 16 0.01529112 -0.01520409 0.00008703 КСП-4 17 0.01523884 -0.01520409 0.00003475 ЗИИ-2Р 18 0.01523884 -0.01520409 0.00003475 ЗИИ-2Р 19 0.01528318 -0.01520409 0.00007910 СПУ-1-1M		13 0 75558260	-0.754140	5/10	0.00143620			
14 0.1500205 -0.151107 0.0015155 Biok Inframe B15505 15 0.01529112 -0.01520409 0.00008703 KCII-4 16 0.01529112 -0.01520409 0.00008703 KCII-4 17 0.01523884 -0.01520409 0.00003475 3ИИ-2P 18 0.01523884 -0.01520409 0.00003475 3ИИ-2P 19 0.01528318 -0.01520409 0.00003710 CIIV-1-1M		14 0 75606203	-0.754140	549	0.00143020	Блок питания БНВЗ-05		
15 0.01522112 -0.0120409 0.00008703 RCI14 16 0.01529112 -0.01520409 0.00008703 KCI14 17 0.01523884 -0.01520409 0.00003475 3ИИ-2P 18 0.01523884 -0.01520409 0.00003475 3ИИ-2P 19 0.01528318 -0.01520409 0.00003475 3ИИ-2P		15 0.01520112	-0.015204	109	0.000191333	КСП-4		
10 0.0152/112 -0.0152000 0.00001/05 КСП-4 17 0.01523884 -0.01520409 0.00003475 ЗИИ-2Р 18 0.01523884 -0.01520409 0.00003475 ЗИИ-2Р 19 0.01528318 -0.01520409 0.00007910 СПУ-1-1М		16 0.01529112	-0.015204	109	0.00008703	КСП-4		
17 0.0152364 -0.01520407 0.0003475 ЭНИ-21 18 0.01523884 -0.01520409 0.00003475 ЗИИ-2Р 19 0.01528318 -0.01520409 0.00007910 СПУ-1-1М		17 0.01523884	-0.015204	109	0.00003475	ЗИИ-2Р		
19 0.01528318 -0.01520409 0.00007910 CTIV-1-1M		18 0.01523884	-0.015204	409	0.00003475	ЗИИ-2Р		
		19 0.01528318	-0.015204	409	0.00007910	СПУ-1-1М		

Табл. 8. Результаты решения примера 1.6

					_
20	0.01528318	-0.01520409	0.00007910	СПУ-1-1М	
21	0.01532024	-0.01520409	0.00011615	Частотомер ЧЗ-54	
22	0.01532024	-0.01520409	0.00011615	Частотомер ЧЗ-54	
23	0.00968664	-0.00964985	0.00003679	CHM-12	
24	0.00968664	-0.00964985	0.00003679	CHM-12	
25	0.00966560	-0.00964985	0.00001575	AKC-01C	
26	0.00966560	-0.00964985	0.00001575	AKC-01C	
27	0.00972357	-0.00964985	0.00007372	Частотомер ЧЗ-54	
28	0.00972357	-0.00964985	0.00007372	Частотомер ЧЗ-54	
31	0.75500788	-0.75414649	0.00086139	Источник питания	
32	0.78938072	-0.75414649	0.03523423	Сигнализатор ДРГ-1М-03 в хранилище	
33	0.79844354	-0.75414649	0.04429705	Сигнализатор ДРГ-1М-03 в хранилище	
37	0.0	0.0	0.0	Аварийная защита	
38	0.76280480	-0.75414649	0.00865830	Несущие конструкции: фундамент, стены, и др.	
39	0.76135487	-0.75414649	0.00720838	Ж.б колоды для хранения ЗРИ	
40	0.76280480	-0.75414649	0.00865830	Радионуклидные источники	
43	0.0	0.0	0.0	Система аварийной сигнализации на участке	
44	0.0	0.0	0.0	Система сигнализации стенда ХИ (№125)	
45	0.75587025	-0.75414649	0.00172376	Оборудование управления перемещением КГ	

Как видим, логическая и вероятностная функции и значение средней наработки до отказа настоящего решения полностью совпали с результатами примера 1.1 (см. табл.2 п.1, 2, 3, 4, 6). Полученное в данном примере значение вероятности безотказной работы СФИ (с учетом собственного времени работы части элементов) составило $P_{C\phi H}(1000 + ac) = 0.754146491813$, что больше ранее полученного в примере 1.1 (см. Табл. 2, п.5) значения 0.634658575170. Это согласуется с физическим смыслом исследуемого процесса.

Для подтверждения корректности решения данного примера ПК ACM C3MA полученный машинный результат $P_{C\phi H}(1000 \, vac) = 0.754146491813$ автоматизирования и вычисления вероятности безотказной работы СФИ сопоставляется с ручным аналитическим решением этой задачи.

1. Вероятности безотказной работы элементов, с учетом различной собственной наработки, составляют:

№ эл-та	Тоі [год]	t [час] (наработка)	Pi	№ эл-та	Тоі [год]	t [час] (наработка)	Pi
1	4	1000	0.97186457	20	2.2	100	0.994825
2	5.5	1000	0.97945841	21	1.5	100	0.992419
3	12	1000	0.99053217	22	1.5	100	0.992419
4	11	1000	0.98967591	23	3	100	0.996202
5	8	1000	0.98583192	24	3	100	0.996202
6	10	1000	0.98864938	25	7	100	0.998371
7	6	1000	0.98115397	26	7	100	0.998371
8	12	1000	0.99053217	27	1.5	100	0.992419
9	12	1000	0.99053217	28	1.5	100	0.992419
10	6	100	0.998099	31	10	100	0.998859
11	6	100	0.998099	32	2.5	1000	0.95536472
12	6	100	0.998099	33	2	1000	0.94452075

13	6	100	0.998099	37	10	100	0.998859
14	4.5	100	0.997466	38	10	1000	0.98864938
15	2	100	0.994308	39	12	1000	0.99053217
16	2	100	0.994308	40	10	1000	0.98864938
17	5	100	0.997719	43	5.5	100	0.997927
18	5	100	0.997719	44	3	100	0.996202
19	2.2	100	0.994825	45	5	100	0.997719

2. Вероятности безотказной работы фрагментов структуры СФИ (см. Рис. 2), соответствующие ЛКФ (1), составляют:

$$\begin{split} p(y49) &= p_6 p_7 = 0.98864938 * 0.98115397 = 0.970017273; \\ p(y34) &= p_{32} p_{33} = 0.95536472 * 0.94452075 = 0.902361804; \\ p(y51) &= p_1 p_2 p_3 p_4 p_4 p_8 p_9 p_{40} p_{38} p_{39} = 0.873869463; \\ p(y58) &= p_{10} p_{11} = 0.996202055; \\ p(y14) &= p_{14} p_{12} = 0.995570469; \\ p(y13) &= p_{13} p_{31} = 0.996960489; \\ p(y21) &= p_{21} p_{19} p_{17} p_{15} = 0.979424531; \\ p(y22) &= p_{22} p_{20} p_{18} p_{16} = 0.979424531; \\ p(y29) &= p(y21) + p(y22) - p(y21)p(y22) = 0.99957665; \\ p(y27) &= p_{27} p_{25} p_{23} = 0.98703842; \\ p(y28) &= p_{28} p_{26} p_{24} = 0.98703842; \\ p(y30) &= p(y27) + p(y28) - p(y27)p(y28) = 0.999831997; \\ p(y52) &= p(y58)p(y29)p(y30)p(y14)p(y13)p_{45} = 0.98593658. \end{split}$$

 Окончательный аналитический расчет вероятности безотказной работы СФИ, согласно заданной структуры и ЛКФ (1)

$$\begin{split} P_{C\phi M}(1000 \text{ vac}) &= p(y49y34y51y52) = p(y49)p(y34)p(y51)p(y52) = \\ &= 0.970017273 * 0.902361804 * 0.873869463 * 0.98593658 = 0.754146492 \end{split}$$

Полученный результат аналитического расчета вероятности функциональной безотказности СФИ, с учетом разного собственного времени работы элементов, точно совпадает с результатом моделирования и вычислением ПК АСМ СЗМА этого показателя (см. Табл.8, п.5).

Обратное решение данного примера дает вероятность 0.245853508187 функционального отказа СФИ. Равенство 0.245853508187 + 0.754146491813 = 1.0 подтверждает непротиворечивость прямого и обратного моделирования и расчетов данного примера в ПК АСМ СЗМА.

Выводы по результатам Теста №1

Рассмотренные в Тесте №1 примеры иллюстрируют и подтверждают следующие функциональности ПК АСМ СЗМА.

- Комплекс позволяет использовать прямой, обратный и смешанный подходы (прямую, обратную и смешанную логику рассуждений) при построении монотонных и немонотонных СФЦ надежности и безопасности ОИАЭ /все примеры Теста №1/;
- Комплекс позволяет автоматически строить прямые, обратные и смешанные математические модели (логические ФРС и многочлены ВФ) и вычислять соответствующие показатели надежности и безопасности (технического риска) структурно-сложных ОИАЭ / все примеры теста №1/;
- В Комплексе реализована функциональная возможность, на основе единой СФЦ и с помощью разных ЛКФ, ставить и решать различные задачи автоматизированного моделирования и расчета показателей свойств:
 - надежности ОИАЭ (безотказности и отказа СФИ /пример 1.1/);
 - безопасности ОИАЭ (технического риска возникновения в СФИ проектной аварии /пример 1.2/, возникновения и локализации запроектной аварийной ситуации /пример 1.3/, вероятности возникновения запроектной аварии /пример 1.4/);
- Комплекс позволяет с помощью показателей значимостей и вкладов элементов обеспечивать выработку, обоснование и оценку мероприятий по увеличению безопасности (снижению риска) ОИАЭ /пример 1.5/;
- Комплекс позволяет учитывать разные значения собственного времени работы элементов в показателях надежности ОИАЭ /пример 1.6/.
- Корректность моделирования и расчетов ПК АСМ СЗМА подтверждена сопоставлением машинных и ручных аналитических расчетов /примеры 1.1, 1.2, 1.3, 1.6/ и контролем непротиворечивости результатов прямого и обратного моделирования /примеры 1.1, 1.2, 1.3, 1.4, 1.6/.

Расчетный и аналитический тест №2. МОДЕЛИРОВАНИЕ И РАСЧЕТ НАДЕЖНОСТИ СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ

Справка. Рассматриваемая задача впервые разработана и аналитически решена основоположником отечественной научной школы логико-вероятностного моделирования академиком Рябининым И.А. [30-32]. Многие годы она является классическим тестовым примером, на котором проверяются практически все методы, методики и программные средства логиковероятностного моделирования.

2.1. Описание задачи

Рассматривается система электроснабжения (СЭС) кольцевой структуры, состоящая из 15 элементов:

- 3-х генераторов одинаковой мощности (1, 2, 3);
- 3-х главных распределительных щитов ГРЩ (4, 6, 9);
- 3-х перемычек (5, 7, 8);
- 6-ти вторичных распределительных щитов ВРЩ (10,11,12,13,14,15).

Система предназначена для обеспечения бесперебойного питания одновременно трех групп потребителей (П1, П2, П3). Мощности каждого генератора достаточно для обеспечения работы всех потребителей. Нет никаких ограничений по пропускной способности ни ГРЩ, ни перемычек между ними. Функциональная схема рассматриваемой системы электроснабжения представлена на Рис. 12.

Рис. 12. Функциональная схема системы электроснабжения

Для тестирования ПК АСМ СЗМА выполняются моделирование и расчеты вероятностей различных режимов обеспечения питанием потребителей СЭС и варьирование значений показателей надежности элементов, аналитические и машинные решения которых опубликованы в [30-32, 20].

1.1. Формализованная постановка задачи в ПК АСМ СЗМА

На Рис. 13. изображена СФЦ рассматриваемой СЭС (рисунок считан с экрана ПК АСМ СЗМА).

Рис. 13. СФЦ электроэнергетической системы

Граф СФЦ, приведенный на Рис. 13, подобен исходной функциональной схеме СЭС, приведенной на Рис. 12. Поэтому ее построение не вызывает затруднений.

<u>Пример 2.1. Расчет вероятности обеспечения питанием СЭС всех</u> <u>трех потребителей при заданных вероятностях безотказной</u> работы элементов, независящих от времени.

Решение этой задачи с помощью ПК АСМ СЗМА выполнено для трех вариантов задания одинаковых значений вероятностных параметров p_i , элементов i = 1, 2, ..., 15 и логического критерия функционирования $Y_c = y_{25}$.

{Проекты. Тест_2. Пример_2_1. Пример_2_1_0.5 }

{Проекты. Тест_2.Пример_2_1.Пример_2_1_0.99 } {Проекты. Тест_2.Пример_2_1.Пример_2_1_0.999 }

Полученные ПК АСМ СЗМА результаты расчетов приведены в Табл. 9.

No	Параметры элементов	Результаты р на	асчетов Рс, для $Y_{c} = y_{25}$ различных ПС	
Π/Π	$p_i, i = 1, 2,, 15$	ПК АСМ СЗМА	Relex RBD	Risk Spectrum
1	0.5	0.070861816406	0.070862	0.005
2	0.99	0.998813294911	0.998813	0.9879
3	0.999	0.999988013030	0.999988	0.999988

Табл. 9. Результаты решения примера 2.1

Результат Pc=0.070861816406 расчетов на ПК АСМ СЗМА по первому варианту параметров элементов ($p_i=0.5$) точно совпал с аналитическим решением данного примера, приведенным в монографии [31], стр.185.

Все три варианта расчетов на ПК АСМ СЗМА полностью совпали с результатами, полученными с помощью программного модуля Relex RBD и приведенными в отчете [20] (см. приложение 4, стр.92, табл. 2.1.1 и стр.125, сводная таблица результатов раздела 2.1, пример 1).

Результаты вариантов 1 и 2 расчетов на ПК АСМ СЗМА несколько отличаются от результатов расчетов, полученных с помощью ПК Risk Spectrum, приведенных в отчете [20] (см. приложение 2, стр.118, табл. 2.1.13 и стр.125, сводная таблица результатов раздела 2.1, пример 1). Указанные отличия определяются тем, что в ПК Risk Spectrum реализованы приближенные методы расчетов, которые, согласно технической документации на этот комплекс [24], дают результаты расчетов, близкие к точным, при условии, что значения вероятностей отказов элементов $q_i \leq 0.01$. Это условие не выполняется для варианта 1 данного примера.

Результаты варианта 3 расчетов на ПК АСМ СЗМА полностью совпали с результатами, полученными с помощью программного модуля Relex RBD и программного комплекса Risk Spectrum, приведенными в отчете [20] (см. приложение 2, стр.125, сводная таблица результатов раздела 2.1, пример 1).

<u>Пример 2.2. Автоматическое определение списка минимальных путей обес-</u> <u>печения питанием СЭС одновременно всех трех потребителей</u>

{Проекты.Tecm_2.Пример_2_2}

В результате решения этого примера получена минимальная дизьюнктивная нормальная форма логической функции, которая содержит 92 конъюнкции, представляющие соответствующие кратчайшие (минимальные) пути успешного функционирования (КПУФ):

(11)

Автоматическое определение списка минимальных путей обеспечения питанием СЭС выполнено в ПК АСМ СЗМА на основе СФЦ, изображенной на Рис. 13, и прямого ЛКФ $Y_c = y_{25} = y_{25}$ заданного режима функционирования. ФРС (11) считана из файла rezacm.lst хранения результатов ПК АСМ СЗМА. Этот результат решения Примера 2.2 точно совпадает со списками минимальных путей рассматриваемой СЭС, полученными:

- аналитически и приведенными в монографии [31] стр.182-184;
- с помощью программного модуля Relex RBD и приведенными в отчете [20] (см. приложение 4, стр. 96 рис.2.1.4).

<u>Пример 2.3. Автоматическое определение списка минимальных сечений отказов СЭС, приводящих к не обеспечению питанием</u> <u>хотя бы одного из трех потребителей</u>

{Проекты. Тест_2. Пример_2_3 }

Автоматическое определение списка минимальных сечений отказов обеспечения питанием СЭС выполняется в ПК АСМ СЗМА на основе СФЦ, изображенной на Рис. 13, и обратного ЛКФ $\overline{Y}_{c} = \overline{y}_{25} = y''25$ нереализации заданного режима функционирования. В результате решения этого примера получена минимальная дизъюнктивная нормальная форма логической функции, которая содержит 31 конъюнкцию. Они представляют соответствующие минимальные сечения отказов элементов СЭС:

Данная логическая функция считана из файла результатов программного комплекса ПК ACM C3MA. В записи этой функции двумя штрихами помечены инверсированные логические переменные, представляющие отказы соответствующих элементов СЭС. Каждая конъюнкция данной ФРС представляет отдельное минимальное сечение отказа рассматриваемой системы.

Результат (12) решения примера 2.3 в ПК АСМ СЗМА точно совпадает со списками минимальных сечений отказов рассматриваемой СЭС, полученными:

- с помощью модуля Relex RBD и приведенными в отчете [20] (см. приложение 4, стр.97, рис.2.1.5);
- с помощью ПК Risk Spectrum, и приведенными в отчете [20] (см. приложение 4, стр.122-123, табл.2.1.19).

Пример 2.4. Расчет надежности невосстанавливаемой СЭС с заданной средней наработкой до отказа элементов в предположении экспоненциального распределения

{Проекты.Тест_2.Пример_2_4.Пример_2_4_невосстанавливаемая_2 }

{Проекты. Тест_2. Пример_2_4. Пример_2_4_невосстанавливаемая_200 }

Решение данного примера выполнено с помощью ПК ACM C3MA на основе той же СФЦ СЭС (см. Рис. 13) и критерия работоспособности $Y_c = y_{25} = y_{25}$. Расчеты производились для двух значений параметров надежности элементов и представлены в Табл. 10.

Параметры	Вычисляемый	ПК АСМ СЗМА	Roley BBD	Risk Spectrum
элементов	показатель		Kelex KDD	Risk Speetrum
Тоі= 2 года.	Вероятность без-	0.20154041671	0.201540	0.057
Тоі= 200 лет.	отказной работы, t = 8760 ч.	0.9997031269	0.9997031	0.9997003
Тоі= 2 года.	Ср. наработка до	5963	5963.74	не вычисляется
Тоі= 200 лет.	отказа (час)	596373	596373.3	не вычисляется

Табл. 10. Результаты решения примера 2.4

Все результаты расчетов вероятности безотказной работы СЭС, полученные ПК АСМ СЗМА, совпадают с результатами расчетов этого показателя, полученными с помощью модуля Relex RBD, приведенными в отчете [20] (см. приложение 2, стр.94, табл.2.1.2 и стр.125, сводная таблица разд. 2.1, пример 1).

Расчет вероятности безотказной работы СЭС, полученный ПК АСМ СЗМА для варианта Toi=200 лет (выполняется условие $q_i \le 0.01$), совпал с результатом расчета этого показателя, полученным с помощью ПК Risk Spectrum, приведенным в отчете [20] (см. приложение 4, стр.125, сводная таблица результатов раздела 2.1, пример 1.).

Расчет вероятности безотказной работы СЭС, полученный ПК АСМ СЗМА для варианта Toi=2 года (не выполняется условие $q_i \le 0.01$), не совпал с результатом расчета этого показателя, с помощью ПК Risk Spectrum, (см. приложение 4, стр.125, сводная таблица результатов раздела 2.1, пример 1.). Это объясняется тем, что согласно [24] в ПК Risk Spectrum корректность расчетов обеспечивается при условии значений вероятностей отказов элементов $q_i \le 0.01$, которое в данном варианте расчетов (Toi=2 года, t = 8760 час.) не выполняется ($q_i = 0.39$).

Результаты расчетов средней наработки до отказа СЭС, полученные ПК ACM C3MA, практически совпадают с результатами расчетов этого показателя, полученными с помощью модуля Relex RBD, приведенными в отчете [20] (см. приложение 4, стр.94, табл.2.1.2). Незначительные расхождения объясняются, возможно, тем, что в обоих программных комплексах применяются корректные, но различные методики вычисления показателей этого вида.

<u>Пример 2.5. Расчет восстанавливаемой СЭС с заданными средними наработ-</u> ками на отказ и временем восстановления элементов в предположении экс-<u>поненциального распределения</u>

Решение данного примера выполнено с помощью ПК АСМ СЗМА на основе той же СФЦ СЭС (см. Рис. 13) и критериев $Y_c = y25$ и $Y_c = y^225$.

{Проекты.Tecm_2.Пример_2_5.Пример_2_5_восст_2 } {Проекты.Tecm_2.Пример_2_5.Пример_2_5_восст_200 }

Результаты моделирования и расчетов ПК АСМ СЗМА показателей надежности восстанавливаемой СЭС приведены в Табл. 11.

N⁰	Парамет-	Вычисляемый	ПК АСМ СЗМА	Bolov BBD	Bisk Sneetrum
вар.	ры эл-ов	показатель		Kelex KDD	Kisk spectrum
	a, ac. c	Вер. безот. раб. СЭС (t = 8760ч.)	0.93509385	0.9351	в ПК Risk
1 1 1 Коэффициент готовности 0.99961588951 1 1 1 1 1 1 1 0.99961588951 1 1 1 1 1 1 0.99961588951 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 год 00 ча 60ча	Коэффициент готовности	0.999615889512	0.999616	Spectrum вычис- ляются, но ре-
	50.16	50.1 7	зультаты в НИР [20]		
	t TI	Средняя наработка на отказ системы (час).	130535.1	130535.09	не приведены
	പ്ര	Вероятность отказа СЭС (t = 8760ч.).	6.84787479E-006	6.85e-6	7.01E-7
	00 лес)0 ча 0час	Коэффициент неготовности СЭС.	3.9087E-8	3.9087e-8	3.912E-8
2	= 20 i = 1(= 876	Среднее время восста- новления системы (час).	50.001538	50.0015	50
	Toi T ^B i t =	Средняя наработка на отказ системы (год).	146030.207509	146029.68	145953.9508

Табл. 11. Результаты решения примера 2.5

Первый вариант данного примера является прямым моделированием в ПК ACM C3MA готовности СЭС по критерию $Y_c = y25$. Результаты второго варианта представляют неготовность СЭС. Решение задачи по критерию $Y_c = y^225$ ПК ACM C3MA позволяет получить инверсные модели и значения только коэффициента неготовности СЭС Qc3c=0.00000039087, значимостей и вкладов элементов. Расчет вероятностно-временных характеристик системы по инверсной модели в базовой версии ПК ACM C3MA не производится. Однако, их можно определить, выполнив решения второго варианта примера по прямому критерию $Y_c = y25$. Одновременно будет вычислено значение коэффициента готовности СЭС 0.999999960913.

Все результаты расчетов показателей надежности восстанавливаемой СЭС, полученные ПК АСМ СЗМА, практически совпали с указанными в Табл. 11 данными, вычисленными с помощью модуля Relex RBD и ПК Risk Spectrum. Они приведены в отчете [20] (см. приложение 4, стр.125, сводная таблица результатов раздела 2.1, пример 3).

Пример 2.6. Немонотонная модель функционирования СЭС

{Проекты.Tecm_2.Пример_2_6 }

В данном тестовом примере с помощью ПК ACM C3MA построена логическая модель и рассчитана вероятность частичного отказа СЭС, который определяется следующими условиями:

- структура СЭС задана той же СФЦ, изображенной на Рис. 13;
- статические параметры (вероятности безотказной работы) элементов составляют p_i = 0.5, i = 1,2,...,15;
- частичный отказ СЭС определяется событием (см. Рис. 12 и Рис. 13) обеспечения питанием потребителя П2 (y₂₄) и одновременного необеспечения питанием потребителей П1(y
 ₂₃) и П3 (y
 ₂₂), что задается логическим критерием

$$Y_{Omka3a} = y_{24} \cdot \overline{y}_{23} \cdot \overline{y}_{22} = y24y''23y''22$$
(13)

Подобные задачи часто имеют место при оценке риска и качественносложном анализе надежности систем, так называемого, "второго типа". В таких качественно-сложных системах могут иметь место множественные (больше двух) состояния отказа или работоспособности, которые существенно различаются по степени возможных аварийных последствий, затрат, ожидаемого ущерба или по уровню эффективности выполнения системой своего функционального назначения. В ПК АСМ СЗМА каждое из множества таких состояний системы задается соответствующим логическим критерием. Эти ЛКФ и соответствующие им модели, как правило, являются немонотонными.

Автоматизированное моделирование и расчеты на ПК АСМ СЗМА данного примера дали следующие результаты.

Логическая ФРС (логическая функция реализации частичного отказа), автоматически сформированная в ПК АСМ СЗМА, включает следующие 34 конъюнкции:

(14)

В данном случае каждая конъюнкция ФРС не является ни КПУФ, ни МСО в их классическом определении. Это немонотонная логическая ФРС рассматриваемой системы. Прямые логические переменные в конъюнкциях представляют различные минимальные комбинации состояний работоспособности элементов СЭС, обеспечивающих питанием потребителя П1. Остальные, инверсированные логические переменные в конъюнкциях этой ФРС (помечены двойным штрихом и выделены) представляют различные минимальные комбинации состояний отказа элементов СЭС, вследствие которых не обеспечиваются питанием одновременно потребители П2 и П3.

Правильность полученной с помощью ПК АСМ СЗМА немонотонной логической модели частичного отказа подтверждается ее полным совпадением с результатом решения этой задачи программным модулем Relex Fault Tree, приведенным в отчете [20] (см. приложение 4, стр.102, рис.2.1.2.в).

Вероятность заданного вида отказа СЭС, вычисленная в ПК АСМ СЗМА при условии $p_i = q_i = 0.5$, i = 1, 2, ..., 15, приведена в Табл. 12.

Табл. 12. Результаты решения примера 2.6

Параметры эле- ментов	Вычисляемый показатель	ПК АСМ СЗМА	Relex Fault Tree
$p_i = 0.5$ $i = 1, 2, \dots, 15.$	Вероятность час- тичного отказа	0.074279785156	0.0742797852

Результат вычисления данного показателя ПК АСМ СЗМА точно совпал с расчетами, выполненными с помощью ПК Relex Fault Tree, приведенными в [20] (см. приложение 4, стр.125, сводная таблица результатов раздела 2.1, пример 8).

Положительные вклады элементов СЭС в вероятность частичного отказа приведены на Рис. 14.

Рис. 14. Диаграмма положительных вкладов элементов СЭС

Как видно из диаграммы на Рис. 14, увеличение вероятностей безотказной работы отдельно элементов 1, 2, 4, 6, 10 и 12 приводит к увеличению вероятности рассматриваемого частичного отказа СЭС. И наоборот, увеличение вероятности безотказной работы любого из других элементов (3, 5, 7-9, 11 и 13-15) приводит к уменьшению вероятности этого частичного отказа. Это полностью соответствует физическому смыслу условий возникновения частичного отказа исследуемой СЭС, определяемого СФЦ на Рис. 13 и логическим критерием (13).

Пример 2.7. Расчет смешанной СЭС с восстанавливаемыми и невосстанавливаемыми элементами

{Проекты.Tecm_2.Пример_2_7.Пример_2_7_смешанная_2 } {Проекты.Tecm_2.Пример_2_7.Пример_2_7_смешанная_200 }

Решение данного примера выполнено с помощью ПК АСМ СЗМА на основе той же СФЦ СЭС (см. Рис. 13) и критерия работоспособности $Y_c = y25$ и отказа $Y_c = y"25$. Дополнительными являются следующие условия:

- элементы 1 ÷ 9 восстанавливаемые;
- элементы 10 ÷ 15 невосстанавливаемые.

Результаты моделирования и расчетов показателей надежности смешанной СЭС приведены в следующей таблице

Параметры расчетов	Результат вероятност	ты моделирования и ти готовности смеша	расчетов анной СЭС		
	ПК АСМ СЗМА	Relex RBD	Risk Spectrum		
$T_{0i} = 2 T_{0} T_{0i} = 100 T_{0}$	у25 Модел	у25 Модель безотказности смешанной СЭС			
t = 8760час.	0.5987528314	0.598753	в ПК Risk Spectrum вычисляются, но ре- зультаты в НИР [20] не приведены		
	у"25 Модель отказа смешанной СЭС				
$T_{01} = 200$ лет, $T_{B1} = 100$ час. t = 8760час	0.000076329	7,63e-5	7.65E-5		

Результаты решения примера 2.7

Результаты вероятностных расчетов показателей безотказности и отказа смешанной СЭС, вычисленные ПК ACM C3MA, практически совпали с результатами, полученными с помощью модуля Relex RBD и ПК Risk Spectrum, приведенными в отчете [20] (см. приложение 4, стр.125, сводная таблица результатов раздела 2.1, пример 4).

В ПК АСМ СЗМА данный пример можно решить еще одним способом.

{Проекты.Тест_2.Пример_2_7.Пример_2_7_смешанная_2_Закон } {Проекты.Тест 2.Пример 2 7.Пример 2 7 смешанная 200 Закон } Выполняются следующие действия:

- отдельно вычисляются вероятности безотказной работы невосстанавливаемых элементов СЭС. Они составляют: $p_{10-15} = e^{-\frac{1}{2}*1} = 0.60653066$ (для первого варианта, Toi=2 года) и $p_{10-15} = e^{-\frac{1}{200}*1} = 0.995012479$ (для второго варианта, Toi=200 лет);
- вычисленные значения записываются в соответствующие элементам 10, 11,
 ..., 15 строки столбца Рі статических вероятностных параметров;
- всем этим элементам устанавливается значение признака "Закон" равным
 "0" (использование в расчетах статических параметров);
- выполняются два предыдущих варианта моделирования и расчетов на ПК АСМ СЗМА вероятности безотказной работы смешанной СЭС для Toi=2 года и вероятности отказа для Toi=200 лет.

Все полученные с помощью ПК АСМ СЗМА результаты практически совпадают с предыдущими решениям примеров.

Выводы по результатам Теста №2

Рассмотренные в Тесте №2 примеры иллюстрируют и подтверждают следующие функциональные возможности ПК АСМ СЗМА.

- Комплекс позволяет использовать прямой подход к построению СФЦ надежности структурно-сложных технических систем с множественными циклическими (мостиковыми) связями /все примеры теста №2/;
- С помощью ПК АСМ СЗМА можно определять прямые (КПУФ) и обратные (МСО) логические модели структурно-сложных монотонных систем с циклическими связями элементов /примеры 2.2 и 2.3/;

- Комплекс позволяет вычислять статические показатели надежности систем во всем диапазоне возможных значений параметров элементов (от 0 до 1 включительно) /пример 2.1/;
- При анализе невосстанавливаемой системы на основе прямой монотонной модели ее безотказности в ПК АСМ СЗМА вычисляются следующие характеристики: вероятность безотказной работы; средняя наработка до отказа, значимости и вклады всех элементов /пример 2.4/;
- При анализе восстанавливаемой системы на основе прямой монотонной модели ее безотказности в ПК АСМ СЗМА вычисляются следующие характеристики: коэффициент готовности, средняя наработка на отказ, среднее время восстановления системы, значимости и вклады всех элементов, вероятности безотказной работы/отказа восстанавливаемой системы /пример 2.5/;
- Комплекс позволяет строить немонотонные модели надежности сложных систем (частичный отказ или частичная работоспособность) и вычислять соответствующие вероятностные показатели /пример 2.6/;
- В ПК АСМ СЗМА реализована возможность моделирования и расчета вероятностных характеристик безотказности и отказа смешанных системных объектов, состоящих из восстанавливаемых и невосстанавливаемых элементов /пример 2.7/.
- Все построенные ПК АСМ СЗМА логические модели и выполненные расчеты показателей надежности СЭС являются корректными (правильными в рамках принятых ограничений и допущений). Это подтверждено совпадением результатов ПК АСМ СЗМА с расчетами надежности СЭС, приведенными в литературных источниках /пример 2.1, 2.2/ и полученными с помощью программных комплексов Risk Spectrum и Relex /все примеры теста №2/.

Расчетный и аналитический тест №3. МОДЕЛИРОВАНИЕ И РАСЧЕТ НАДЕЖНОСТИ ФРАГМЕНТА ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

Справка. Рассматриваемая задача разработана специалистами по вероятностному анализу безопасности СПбАЭП и опубликована в журнале "Тяжелое Машиностроение" № 8 за 2004 г. в статье "Оценка безопасности атомных энергетических объектов на стадии проектирования"[33]. Возможности решения этой задачи с помощью различных программных комплексов (ПК "Risk Spectrum" ПК "Relex" и ПК АСМ СЗМА) детально исследованы в совместной НИР организаций ФГУП "СПбАЭП", ОАО "СПИК СЗМА", Санкт-Петербург и ИПУ РАН им. В.А.Трапезникова, Москва [20].

3.1. Описание задачи

На Рис. 15 представлена функциональная схема фрагмента реальной ядерной энергетический установки (ЯЭУ) [33].

Рис. 15. Функциональная схема ЯЭУ

Рассматриваемая ЯЭУ состоит из следующих основных элементов и подсистем:

- системы поддержания вакуума (СПВ) в секциях главного конденсатора (1);
- 2-х секций главного конденсатора (СГК) левого и правого каналов (2, 3);
- 2-х конденсатных насосов (КН) левого и правого каналов (5, 6);
- перемычки (П) между каналами (4);
- 2-х питательных насосов (ПН) левого и правого каналов (9, 10);
- 2-х блоков питательных клапанов (ПК) левого и правого каналов (11, 12);
- 4-х парогенераторов (ПГ) левого и правого каналов (13, 14, 15, 16);
- одного турбогенератора (ТГ) (23).

Наличие перемычки позволяет обеспечить работу конденсатного насоса одного канала работой питательного насоса другого канала.

Задача состоит в необходимости нахождения вероятности безотказной работы ЯЭУ при условии, что для обеспечения нормального функционирования турбогенератора достаточным является нахождение в работе любых двух (из четырех) парогенераторов.

3.2. Формализованная постановка задачи в ПК АСМ СЗМА

СФЦ рассматриваемой ЯЭУ, необходимая для применения ПК ACM C3MA, изображена на Рис. 16.

Рис. 16. СФЦ для автоматизированного моделирования и расчета надежности ЯЭУ

Эта СФЦ подобна исходной функциональной схеме ЯЭУ, приведенной на Рис. 15, поэтому ее построение не вызывает затруднений.

<u>Пример 3.1. Расчет надежности ЯЭУ по заданным вероятностям</u> <u>безотказной работы элементов, независящим от времени</u>

{Проекты. Тест_3. Пример_3_1. Пример_3_1_0.7 } {Проекты. Тест_3. Пример_3_1. Пример_3_1_0.999 }

Результаты моделирования и расчета ПК АСМ СЗМА вероятности безотказной работы ЯЭУ в для двух вариантов задания вероятностей безотказной работы элементов $p_i = 0.7$ и $p_i = 0.999$, приведены в Табл.13:

DED DROMOUTOR	Результаты расчет	ов вероятности безоти	сазной работы ЯЭУ
	ПК АСМ СЗМА	Relex RBD	Risk Spectrum
$p_i = 0.7$	0.152035396543	0.152035	0.087
$p_i = 0.999$	0.99798504411	0.997985	0.997985

Табл. 13. Результаты решения примера 3.1

Результат расчета на ПК АСМ СЗМА варианта 1 данного примера 0.152035396543 (для $p_i = 0.7$) полностью совпал с результатом 0.152035, полученным с помощью программного модуля Relex RBD, приведенным в отчете [20] (см. приложение 4, стр.147, табл. 2.3.1 и стр.156, сводная таблица результатов раздела 2.3, пример 1).

Этот результат не совпал с расчетом на ПК Risk Spectrum (0.087) приведенными специалистами СПбАЭП в том же отчете НИР "Технология 2004" (см. приложение 4, стр.147, табл. 2.3.1 и стр.156, сводная таблица результатов раздела 2.3, пример 1). Причина расхождения результатов обусловлена заданным значением pi = 0.7 всех элементов, т.е. qi = 0.3 > 0.01, которое выходит за границы условий qi <= 0.01 корректных вычислений на ПК Risk Spectrum [24]. Более подробно причины указанного расхождения описаны в статье [33].

Результаты расчета на ПК АСМ СЗМА варианта 2 данного примера (для $p_i = 0.999$, т.е. $q_i = 0.001$) полностью совпали с результатами, полученными с помощью ПК Risk Spectrum и программного модуля Relex RBD, приведенными в отчете [20] (см. приложение 4, стр.147, табл. 2.3.1, стр.153, табл.2.3.4).

<u>Пример 3.2. Расчет коэффициента готовности восстанавливае-</u> мой ЯЭУ с заданными средними наработками до отказа и временем восстановления элементов в предположении экспоненциального распределения

{Проекты. Тест_3. Пример_3_2 }

Для решения используется та же СФЦ ЯЭУ, приведенная на Рис. 15. В этом примере ЯЭУ рассматривается как восстанавливаемая система со следующими параметрами элементов:

- средняя наработка до отказа элементов *i* = 2 6, 9 16 составляет *T*_{0i} = 0.3 года;
- средняя наработка до отказа элементов i = 1, 23 составляет $T_{Oi} = 10$ лет;
- среднее время восстановления всех элементов $T_{Bi} = 500$ час;
- наработка системы t = 17520 час (2 года).

Вычисляемый показатель	ПК АСМ СЗМА	Relex RBD	Risk Spectrum
Вер. безот. раб. СЭС (t = 17520 часов)	3.0E-11	3.0E-11	не вычисляются
Коэффициент готовности	0.6894565181	0.689456	0.678
Среднее время восстановления. системы (час).	325.612857	325.6	
Средняя наработка на отказ системы (час)	722	722.9	не вычисляются

Результаты вычислений приведены в Табл. 14.

Табл. 14. Результаты решения примера 3.2

Все результаты расчетов показателей надежности восстанавливаемой ЯЭУ, полученные ПК ACM C3MA, совпали с результатами, вычисленными с помощью модуля Relex RBD и приведенными в отчете [20] (см. приложение 4, стр.94, табл.2.1.2 и стр.156, сводная таблица результатов раздела 2.3, пример 2).

Некоторое отличие имеет значение коэффициента готовности, вычисленное с помощью ПК Risk Spectrum. Это обусловлено заданными значениями параметров надежности элементов, для которых $q_i > 0.01$.

<u>Пример 3.3. Определение списка кратчайших путей ус-</u> <u>пешного функционирования ЯЭУ</u>

{Проекты.Tecm_3.Пример_3_3 }

Список КПУФ ЯЭУ автоматически формируется в ПК АСМ на основе СФЦ, изображенной на Рис. 15, и прямого логического критерия $Y_{_{RЭУ}} = Y_C = y23$. Он включает следующие 16 конъюнкций (КПУФ):

$Y_C =$	x1 x2 x5 x23 x14 x13 x11 x9 x1 x3 x4 x6 x23 x14 x13 x11 x9 x1 x2 x3 x5 x6 x23 x15 x13 x12 x11 x10 x9 x1 x3 x4 x6 x23 x15 x13 x12 x11 x10 x9 x1 x2 x4 x5 x23 x15 x13 x12 x11 x10 x9 x1 x2 x3 x5 x6 x23 x16 x13 x12 x11 x10 x9	V	x1 x2 x3 x5 x6 x23 x15 x14 x12 x11 x10 x9 x1 x3 x4 x6 x23 x15 x14 x12 x11 x10 x9 x1 x2 x4 x5 x23 x15 x14 x12 x11 x10 x9 x1 x2 x3 x5 x6 x23 x16 x14 x12 x11 x10 x9 x1 x3 x4 x6 x23 x16 x14 x12 x11 x10 x9 x1 x2 x4 x5 x23 x16 x14 x12 x11 x10 x9	(15)
	x1 x2 x4 x5 x23 x15 x13 x12 x11 x10 x9 x1 x2 x3 x5 x6 x23 x16 x13 x12 x11 x10 x9 x1 x3 x4 x6 x23 x16 x13 x12 x11 x10 x9 x1 x2 x4 x5 x23 x16 x13 x12 x11 x10 x9		x1 x3 x4 x6 x23 x16 x14 x12 x11 x10 x9 x1 x2 x4 x5 x23 x16 x14 x12 x11 x10 x9 x1 x3 x6 x23 x16 x15 x12 x10 x1 x2 x4 x5 x23 x16 x15 x12 x10	

Этот результат точно совпадает со списком минимальных путей, полученным с помощью модуля Relex RBD (см. приложение 4, рис.2.3.3). С помощью ПК Risk Spectrum список КПУФ не определяется.

<u>Пример 3.4. Определение списка минимальных сечений</u> отказов ЯЭУ

{Проекты. Тест_3. Пример_3_4 }

Список МСО ЯЭУ автоматически формируется в ПК АСМ СЗМА на основе СФЦ, изображенной на Рис. 15, и обратного логического критерия $\overline{Y}_{_{RЭУ}} = \overline{Y}_{_{C}} = \overline{y}23 = y''23$. Он включает следующие 38 конъюнкций (МСО):

$Y_c =$	x''2 x''4 x''16 x''4 x''5 x''16 x''16 x''9 x''16 x''14 x''13 x''1 x''2 x''3 x''2 x''6 x''3 x''5 x''6 x''3 x''4 x''13 x''3 x''4 x''14 x''4 x''6 x''14 x''4 x''6 x''14 x''13 x''10	V	x"2 x"4 x"10 x"4 x"5 x"10 x"10 x"9 x"11 x"10 x"13 x"12 x"2 x"4 x"12 x"4 x"5 x"12 x"12 x"9 x"12 x"11 x"14 x"12 x"2 x"4 x"15 x"4 x"5 x"15 x"15 x"11 x"15 x"14 x"13 x"16 x"15 x"14 x"23		(16)
---------	--	---	---	--	------

Этот результат, полученный с помощью ПК ACM C3MA, точно совпадает со списками минимальных сечений, полученными с помощью ПК Risk Spectrum и модуля Relex RBD, приведенными в отчете [20] (см. приложение 4, стр.148 рис.2.3.4, и стр.155 табл.2.3.6), а также в статье [33].

<u>Пример 3.5. Решение задачи вероятностного анализа ЯЭУ</u> <u>с помощью дерева отказов</u>

Все рассмотренные выше примеры анализа ЯЭУ (см. Рис. 15) можно решить с помощью технологии деревьев отказов, реализованной в ПК АСМ СЗМА. Для этого, при постановке задачи, используется обратный подход, когда на основе анализа функциональной схемы строится СФЦ дерева отказов исследуемой сис-

темы и вводится в ПК АСМ СЗМА. Для рассматриваемого примера дерево отказов может быть построено, например, на основе умозрительного перебора сечений функциональной схемы ЯЭУ, изображенной на Рис. 15, и представления их графическими средствами СФЦ. Здесь, главное, не пропустить какое-либо сечение. Можно также воспользоваться минимальными сечениями отказов (16), полученными ранее в ПК АСМ СЗМА на основе прямой СФЦ (см. Рис. 16), приведя эту логическую функцию к какой-либо более компактной скобочной форме. Один из возможных вариантов дерева отказов ЯЭУ, представленный графическими средствами СФЦ, изображен на Рис. 17.

Рис. 17. СФЦ дерева отказов ЯЭУ для статических расчетов

На этой СФЦ темными кружками обозначены события отказов основных 15 элементов ЯЭУ. Для контроля согласованности вычислений с примером 3.1 их собственные статические вероятности задаются равными $p_i = 0.3 = 1 - 0.7$ и $p_i = 0.001 = 1 - 0.999$. Светлыми кружками на СФЦ представлены дополнительные размноженные вершины тех же событий. Правила применения аппарата размножения вершин при построения СФЦ описаны в Инструкции пользователя ПК АСМ СЗМА (см. приложение 1, §5).

Результаты моделирования и расчетов ПК АСМ СЗМА статических вероятностей безотказной работы и отказа ЯЭУ на основе дерева отказов {Проекты.Tecm_3.Пример_3_5.Пример_3_5_вероятность_0.3 } {Проекты.Tecm_3.Пример_3_5. Пример_3_5_вероятность_0.001 }

приведены в Табл. 15.

Наименования результа-	Результаты моделирования и расчетов в ПК АСМ СЗМА статиче- ских вероятностей безотказной работы и отказа ЯЭУ на основе дере- ва отказов		
тов моделирования и рас- четов	Модель отказа ЯЭУ	Модель безотказности ЯЭУ,	
	$Y_{O} = y55$	$Y_P = \overline{Y}_O = y''55$	
Логическая ФРС	Список МСО из 38 конъюнкций, совпадает с (16)	Список КПУФ из 16 конъюнкций, совпадает с (15)	
Многочлен ВФ	218 одночленов	26 одночленов	
Вероятность при p _i = 0.3	0.847964603457	0.152035396543 (см. Табл. 13)	
Вероятность при p _i = 0.001	0.00201495589	0.99798504411 (см. Табл. 13)	

Табл. 15. Результаты решения примера 3.5

Эти результаты полностью совпадают с решениями данной задачи, приведенными в примере 3.1 настоящего отчета, статье [33] и НИР [20] (см. приложение 4, сводная таблица результатов раздела 2.3, пример 1).

Для расчета в ПК АСМ СЗМА вероятностно-временных показателей надежности систем, представляемых деревьями отказов, необходимо в СФЦ использовать не обратные (отказ), а прямые (безотказность) исходы базовых элементарных событий. При этом необходимые для построения дерева отказы базовых событий в СФЦ представляются инверсными выходами соответствующих функциональных вершин. Преобразуя СФЦ на Рис. 17 к указанному виду, получаем:

Рис. 18. СФЦ дерева отказов ЯЭУ для вероятностно-временных расчетов

Вводим эту СФЦ в ПК АСМ СЗМА и задаем вероятностно-временные параметры надежности элементов такие же, как и в примере 3.2:

- средняя наработка до отказа элементов i = 2 6, 9 16 составляет $T_{Oi} = 0.3$ года;
- средняя наработка до отказа элементов i = 1, 23 составляет $T_{Oi} = 10$ лет;
- среднее время восстановления всех элементов $T_{Bi} = 500$ час;
- наработка системы t = 17520 час (2 года).

СЗМА на основе дерева отказов, получаем:

{Проекты. Тест_3. Пример_3_5. Пример_3_5_восстанавливаемая ЯЭУ }

Рис. 19. Результаты моделирования и расчетов вероятностно-временных показателей безотказности ЯЭУ на основе дерева отказов

Результаты на Рис. 19 полностью совпали с решением этой задачи в примере 3.2 (см Табл. 14), полученным на основе СФЦ блок-схемы ЯЭУ (см. Рис. 16).

Рассмотренные в данной тестовой задаче примеры показывают, что функциональные возможности ПК АСМ СЗМА позволяют строить прямые и обратные модели для анализа ОИАЭ и вычислять показатели надежности, как на основе СФЦ графов связности, так и на основе деревьев отказов.

Выводы по результатам Теста №3

Рассмотренные в Тесте №3 примеры иллюстрируют и подтверждают следующие функциональные возможности ПК АСМ СЗМА:

- Реализацию с помощью ПК АСМ СЗМА прямого /примеры 3.1-3.4, блоксхема работоспособности/ и обратного /пример 3.5, деревья отказов/ подходов к построению СФЦ надежности (безотказности и отказа) структурносложной ЯЭУ с циклическими (мостиковыми) и мажоритарными (K/N) связями элементов и подсистем;
- Возможность построения с помощью ПК АСМ СЗМА прямых (КПУФ) и обратных (МСО) логических моделей как на основе СФЦ блок-схем, так и на основе СФЦ деревьев отказов /примеры 3.3 и 3.4/;
- Возможность вычисления с помощью ПК АСМ СЗМА статических и вероятностно-временных показателей надежности этого класса ОИАЭ как на основе прямых СФЦ блок-схем / примеры 3.1, 3.2/; так и на основе СФЦ деревьев отказов /пример 3,5 /.
- Правильность работы ПК АСМ СЗМА по логико-вероятностному анализу надежности ЯЭУ подтверждена совпадением построенных логических моделей и вычисленных статических и вероятностно-временных показателей надежности ЯЭУ с результатами решения всех примеров теста №3 с помощью программных комплексов Risk Spectrum [20] и Relex, а также данными, приведенными в статье [33].

Расчетный и аналитический тест №4. РАСЧЕТ ВЕРОЯТНОСТЕЙ ВАРИАНТОВ СЦЕНАРИЯ РАЗВИТИЯ АВАРИИ, ЗАДАННОГО ДЕРЕВОМ СОБЫТИЙ

Справка. Рассматриваемая задача разработана специалистами НТЦ "Промышленная безопасность" Ростехнадзора РФ [34]. Возможности решения этой задачи с помощью различных программных комплексов (ПК "Risk Spectrum" ПК "Relex" и ПК АСМ СЗМА) детально исследованы в совместной НИР организаций ФГУП "СПбАЭП", ОАО "СПИК СЗМА" (Санкт-Петербург) и ИПУ РАН им. В.А.Трапезникова (Москва) [20].

4.1. Описание задачи

Исходное дерево событий сценария возможных вариантов развития аварии,

приведенное в [34], изображено на Рис. 20.

Рис. 20. Дерево событий аварии

Необходимо рассчитать вероятность реализации каждого из представленных деревом событий возможных вариантов развития аварии.

4.2. Формализованная постановка задачи в ПК АСМ СЗМА

На основе данных, приведенных в [34], и дерева событий, изображенного на Рис. 20, разрабатывается соответствующая СФЦ заданного сценария развития аварии, необходимая для применения ПК АСМ СЗМА. Эта СФЦ приведена на Рис. 21.

Рис. 21. СФЦ дерева событий аварии

В данной СФЦ для представления процесса развития аварии, соответствующего исходному дереву событий, использован аппарат групп несовместных событий (ГНС). Каждое разветвление исследуемого процесса представлено в графе СФЦ полной группой из двух несовместных исходов соответствующих вершинам с номерами: {2, 22}, {3, 33}, {4, 44}, {5, 55}, {6, 66}, {7, 77}, {8, 88}. Это позволяет строить СФЦ исследуемого сценария развития аварии (см. Рис. 20) в форме, которая является прямым подобием исходного графа дерева событий, что существенно облегчает постановку задач данного класса для применения ПК АСМ СЗМА.

Вероятности элементарных событий примера заданы в соответствии с данными постановки этой задачи, приведенными в [34]. Статические вероятности элементарных событий составляют:

p1 = 1.0;	p22 = 0.95;
p2 = 0.05;	p33 = 0.2;
p3 = 0.8;	p44 = 0.52631579;
p4 = 0.47368421;	p55 = 0.5;
p5 = 0.5;	p66 = 0.9;
p6 = 0.1;	p77 = 0.22222222;
p7 = 0.77777778;	p88 = 0.2.
p8 = 0.8;	

69

<u>Пример 4.1. Расчет вероятностей отдельных вариантов развития аварии на</u> основе СФЦ деревьев событий с ГНС

{Проекты.Тест_4.Пример_4_1 }

Для расчета вероятности каждого из возможных вариантов развития аварии с помощью ПК ACM C3MA выполняются следующие действия:

- Подготовленная СФЦ дерева событий и параметры элементов вводятся в ПК АСМ СЗМА;
- 2. По каждому из выходов сценария развития аварии (на Рис. 20 и Рис. 21 их восемь от "а" до "и" включительно) с помощью ПК АСМ СЗМА решается задача автоматизированного моделирования и расчета вероятности соответствующего варианта исхода развития аварии.

На Рис. 22 приведен результат расчета вероятности варианта "д" развития аварии (ликвидация аварии, критерий *у*23) на ПК АСМ СЗМА.

Рис. 22. Расчет отдельного варианта развития аварии на ПК АСМ СЗМА

В таблице Табл. 16 приведены вычисленные с помощью ПК ACM C3MA вероятности вариантов развития аварии рассматриваемого примера.

		Результаты моделирования и расчетов			
Характеристики сценариев аварии			ПК АСМ	Relex Event	Risk
			C3MA	Tree	Spectrum
	a	Прекращение горения	0.02	0.02	0.02
	б	Разрушение	0.02	0.02	0.02
	В	эффект домино	0.001	0.001	0.001
Варианты раз-	Г	Разрушение	0.009	0.009	0.009
вития аварии	д	ликвидация аварии	0.35	0.349998	0.35
	e	прекращение горения	0.0999999	0.099998	0.1
	ж	пожар пролива	0.1	0.100001	0.0999
	И	горение или взрыв	0.4	0.400003	0.4

Табл. 16. Результаты решения примера 4.1

Все вероятности реализации отдельных вариантов развития аварии, полученные ПК АСМ СЗМА, полностью совпали с результатами анализа данного примера, приведенными в Методических рекомендациях [34] (стр.31 рис.1).

Эти результаты также совпали с расчетами, выполненными с помощью модуля Relex RBD и ПК Risk Spectrum, приведенными в отчете [20] (см. приложение 4, стр.256, сводная таблица результатов раздела 2.11).

Пример 4.2. Расчет вероятностей групп возможных вариантов развития аварии, выделенных по уровням последствий

{*Проекты.Tecm_4.Пример_4_2* }

В данном примере выполняется расчет вероятностей реализации трех групп вариантов развития аварии, заданных деревом событий на Рис. 20. Объединение вариантов развития аварии в группы выполнено по признаку примерно одинаковых уровней ущерба, выраженного в условных единицах:

- минимальный уровень ущерба (а, д, е), Е1=100 у.е.;
- средний уровень ущерба (в, ж), Е2=250 у.е.;
- высокий уровень ущерба (б, г, и), Е3=1000 у.е.;.

Соответствующая СФЦ изображена на Рис. 23.

Рис. 23. СФЦ сгруппированного дерева событий аварии

На Рис. 24 приведен результат расчета вероятности высокого уровня ущерба от аварии (критерий *у*101), полученный с помощью ПК АСМ СЗМА.

Рис. 24. Расчет вероятности аварии высокого уровня на ПК АСМ СЗМА

Результаты выполненного с помощью ПК АСМ СЗМА расчета вероятностей реализации каждого из трех уровней ущерба, приведены в Табл. 17.

72
Характеристики уровней последствий групп вариантов развития аварии		Вероятности реализации заданных групп уровней последствий		
		ПК АСМ СЗМА	Relex Event Tree	Risk Spectrum
Уровни по- следствий аварии	минимальный (а, д, е)	0.47	0.469996	0.1
	средний (в, ж)	0.101	0.101001	0.001
	высокий (б, г, и)	0.429	0.429003	0.001

Табл. 17. Результаты решения примера 4.2

Все результаты расчетов данных показателей, полученные ПК АСМ СЗМА, совпали с результатами решения этого примера Relex RBD, приведенными в отчете [20] (см. приложение 4, стр.256, сводная таблица результатов раздела 2.11). Однако эти результаты существенно расходятся с расчетами ПК Risk Spectrum.

Для дополнительного подтверждения правильности расчетов, выполненных с помощью ПК ACM C3MA, произведем аналитические решение данной задачи. Оно основано на том, что по построению все отдельные варианты развития рассматриваемой аварии являются несовместными. Поэтому, вероятности реализации групп могут быть вычислены простым суммированием вероятностей отдельных вариантов (см. Табл. 16), вошедших в заданную группу. В результате указанных действий получаем:

$$\begin{split} P_{_{MUHUMAJDHUM}} &= P_a + P_{_{\partial}} + P_e = 0.02 + 0.35 + 0.099999999... = 0.47 ; \\ P_{_{CPE}\partial_{HU}\tilde{u}} &= P_{_{\delta}} + P_{_{\mathcal{H}}} = 0.001 + 0.1 = 0.101 ; \\ P_{_{BUCKU\tilde{u}}} &= P_{_{\delta}} + P_{_{e}} + P_{_{u}} = 0.02 + 0.009 + 0.4 = 0.429 ; \end{split}$$

Эти результаты аналитического расчета точно совпадают с данными ПК ACM C3MA, приведенными в Табл. 17, что подтверждает корректность расчетов, выполненных ПК ACM C3MA.

Полученные в данном примере результаты позволяют применить разработанную в ОЛВМ [4] методику анализа качественно сложных систем и рассчитать показатель, который в [34] назван "ожидаемый ущерб" от аварии. Для рассматриваемого примера он составляет

$$WR_{SIS} = E1 * P_{MUHUMAJAHABŪ} + E2 * P_{cpedhulī} + E3 * P_{GBLCOKULI} = 100 * 0.47 + 250 * 0.101 + 1000 * 0.429 = 501.25 \text{ y.e.}$$

Это один из важных показателей **полного риска** функционирования опасного производственного объекта [34]. Методика его расчета в ОЛВМ впервые была разработана в [7] и реализована в ПК АСМ версии 5.0 [9, 10] и в ПК АСМ 2001 [13].

<u>Пример 4.3. Представление дерева событий</u> <u>с помощью СФЦ с инверсиями</u>

{Проекты. Тест_4. Пример_4_3 }

Аппарат схем функциональной целостности, применяемый в ПК АСМ СЗМА, позволяет еще одним способом представлять деревья событий. В этом случае для разветвления последовательностей используются не группы несовместных событий, а инверсные выходы соответствующих функциональных вершин. Такая СФЦ для рассматриваемого примера изображена на Рис. 25.

Рис. 25. Использование в ПК АСМ СЗМА дерева событий, представленного СФЦ с инверсиями

Рассмотренный способ представления дерева событий несколько проще, чем применение аппарата ГНС. Но с его помощью могут представляться только типовые деревья событий с двумя разветвлениями на уровне каждого элемента. Аппарат ГНС более универсален, поскольку позволяет представлять любое количество несовместных вариантов разветвлений в последовательности событий на каждом уровне развития аварии.

Решение ПК АСМ СЗМА на основе СФЦ, приведенной на Рис. 25 ранее рассмотренных примеров 4.1 и 4.2 дает те же результаты (см. Табл. 16 и Табл. 17).

<u>Пример 4.4. Дерево событий аварии с подключенными структурами</u> различных подсистем

Данный пример является новым и в первой редакции текста Отчета о верификации ПК ACM C3MA отсутствует. Он разработан в процессе экспертизы ПК ACM C3MA при подготовке ответов на замечание и предложение двух экспертов.

1. Замечание Председателя Секции №5, руководителя экспертной группы, эксперта Ершова Г.А. от 27 марта 2006 г.:

4. Построение ДС и моделирование АП является процедурой, абсолютно необходимой для выполнения ВАБ уровня 2 и 3. Как известно, к каждому заголовку ДС «подключается» (например, в коде Risk Spectrum) либо базисное событие, либо дерево ошибок персонала, либо дерево отказов системы безопасности и т.п. Прошу пояснить, каким образом выполняются эти или аналогичные по назначению действия в Вашем комплексе?

2. Предложение эксперта Самохина Г.И. от 12 апреля 2006 г.:

5. ... хорошо бы если бы Вы привели пример с простым деревом событий, интегрированным с функциональными моделями этих событий, что то вроде мини ВАБ.

В подготовленных ответах экспертам была передана настоящая демонстрационная задача.

На рис.26 изображена основная СФЦ (суперграф) декомпозированного дерева событий.

Рис. 26. Основная СФЦ (суперграф) дерева событий с подключенными структурами различных подсистем

Эта СФЦ построена на основе уже описанного выше тестового Примера 4.3. В отличие от СФЦ Примера 4.3 (см. рис.43), вершины 2, 3, 4, 5, 6, 7 и 8

представляют не простые бинарные элементы, а различные структурные подсистемы, подключаемые к данному ДС.

Подсистема вершины 2 основного ДС представляет собой трехэлементное дерево отказов комплекса средств предотвращения мгновенного воспламенения аварийного выброса нефти. СФЦ этого дерева отказов, изображена на следующем рисунке.

Рис. 27. СФЦ подсистемы, представляемой вершиной 2 основного ДС

Все элементы 2.1, 2.2 и 2.3 этого дерева отказов имеют одинаковые статические вероятности собственных отказов, равные

$$P_{2.1} = P_{2.2} = P_{2.3} = 0.095.$$

Подсистема вершины 3 основной СФЦ ДС предназначена для предотвращения возникновения огненного шара и сведения горения выброса нефти к факельной струе. Безотказность этой подсистемы представляется трехэлементной однородной структурой с параметром кратности, равным "+3". Это означает, что данная подсистема состоит из трех однотипных элементов, соединенных конъюнктивно (например, последовательное соединение). Каждый элемент этой группы является невосстанавливаемым с параметром средней наработки до отказа равным:

$$TO_{3,1} = TO_{3,2} = TO_{3,3} = 1.0 \text{ cod} = 8760 \text{ vac}.$$

Подсистема вершины 4 основного ДС предназначена для обеспечения предотвращения воспламенения разлива. Условия безотказности (предотвращения воспламенения разлива) этой подсистемы представлены СФЦ, изображенной на рис.28.

Рис. 28. СФЦ подсистемы, представляемой вершиной 4 основного ДС

В этой СФЦ выход *у26* определяет безотказность объекта, представленного деревом отказов комбинаторной трехэлементной системы (логика безотказности 2/3). Все элементы этой подсистемы составляют группу ООП типовой модели Альфа-фактора с параметрами:

$$Qtot = 0.5, a1=0.925, a2=0.05, a3=0.025$$

Подсистема вершины 5 основного ДС предназначена для тушения горения факельной струи. Она состоит из пяти элементов, функционирующих по мостиковой схеме. В СФЦ этой подсистемы, изображенной на рис.29, условия безотказности представлены на выходе вершины 15, обеспеченной инверсией условий отказа соответствующего дерева отказов.

Рис. 29. СФЦ подсистемы, представляемой вершиной 5 основного ДС

В этом пятиэлементном дереве отказов первые два элемента образуют группу ООП типовой модели множественных греческих букв (МГБ) с параметрами:

$$Qtot = 0.5, \quad p1=1.0, \quad p2=B=0.05.$$

Вероятности отказов трех остальных элементов подсистемы одинаковые

$$p5.3 = p5.4 = p5.5 = 0.5.$$

Подсистема вершины 6 основного ДС предназначена для противодействия поражающим воздействиям огненного шара и недопущения разрушения соседнего оборудования. Структурная схема безотказности этого оборудования эквивалентна известной задаче № 35 И.А.Рябинина (см. Тест_2)

Рис. 30. СФЦ подсистемы, представляемой вершиной 6 основного ДС

Все элементы этой подсистемы невосстанавливаемые с одинаковыми параметрами средней наработки до отказа, равными

$$TO_{6.1} = \dots = TO_{6.15} = 1.0$$
 год = 8760 час.

Подсистема вершины 7 основного ДС обеспечивает ликвидацию аварии и представляет собой комбинаторную структуру 15/25 с одинаковыми собственными вероятностями безотказной работы элементов, равными

$$P_{7.1} = \dots = P_{7.25} = 0.652050458.$$

Вероятность безотказной работы этой высокоразмерной комбинаторной подсистемы вычисляется с помощью Вычисленная с помощью утилиты агрегирования ПК АСМ СЗМА

🌠 Aggregation K of N. Можаев А.С. Метод агрегирования				
15 K/N 25 © Статические расчеты				
Кол-во комбинаций ровно К/N Вычислить С Вер. врем. расчеты				
3268760				
инверсия				
Вероятность элемента Вероятность ровно К/N				
pi 0.652050458 PKNr 0.13923992831656				
Вероятность не менее К/N Вер.ровно К/N при одном р=1				
PKN 0.77777770426577 0.128124987821014				
"Значимость" не менее К/N Вер.ровно К/N при одном р=0				
U.150059103716838				
"Вклад+" не менее К/N "Значимость" ровно К/N Врі роизридата ровно К/N				
"Pr gage" He Meyee K/N "Pr gage" DOBHO K/N				
Bmi -0.0835439569899363 0.0208291754002773				
"Вклад+" ровно К/N				
-0.011114940495547				
·				
Pacvettu no donowinaw Bisk Spectrum				
Pacver PKN no Risk Spectrum 1 ZNi 0	_			
Отн. погрешн. Risk Spectrum 28.5714 % Врі 0	_			
5253 04752671698 Peri 0				
Аппроксимация Г порядкаї соста на станованно соста соста с с с с с с с с с с с с с с с с с с				
Аппроксимация 2 порядка 1-3704726162.31033				
Аппроксимация 3 порядка 5355.18317270597				

и составляет

$$P_7 = 0.77777777$$

Значение этой вероятности устанавливается в качестве статического вероятностного параметра вершины 7 основного дерева событий.

Подсистема вершины 8 основного ДС предназначена для предотвращения взрыва облака и сведения аварии к более низкому уровню последствий (пожару пролива). Безотказность (успешная реализация функции) этой подсистемы представляется двухэлементной кратной структурой с параметром кратности, равным "-2". Это означает, что подсистема состоит из двух однотипных элементов, соединенных дизъюнктивно (параллельное соединение, нагруженное резервирование). Каждый элемент данной кратной группы является невосстанавливаемым с параметром средней наработки до отказа равным

$$TO_{8,1} = TO_{8,2} = 2.0 \text{ cod}$$

В папке *{Проекты.Tecm_4.Пример_4_4}* размещены три примера решения данной задачи с помощью ПК АСМ СЗМА. Каждый из трех примеров соответствует варианту развития аварии в последствиями (ущербом) определенного уровня (аналогично Примеру_4_2):

{Дерево_ событий_составное_y100.sfc} – минимальный уровень ущерба (а, д, е), Е1=100 у.е.;

{Дерево_ событий_составное_y102.sfc} – средний уровень ущерба (в, ж), E2=250 у.е.;

{Дерево_ событий_составное_y101.sfc – высокий уровень ущерба (б, г, и), E3=1000 у.е.;

Результаты моделирования и расчетов вероятностей указанных уровней последствий данного сценария развития аварии, полученные с помощью ПК АСМ СЗМА, приведены в следующей таблице.

Характеристики уровней последствий групп вариантов развития аварии		Вероятности реализации заданных трех групп уровней последствий аварии, вычисленные ПК АСМ СЗМА	
Уровни	минимальный (а, д, е) у100	0.543637847762	
последствий аварии	средний (в, ж) <i>у102</i>	0.364830123705	
	высокий (б, г, и) у101	0.091532028533	

Табл.18. Результаты решения примера 4.4

Рассмотренный пример характеризует только возможность ПК АСМ СЗМА решать некоторые задачи данного класса. Общие его результаты не подтверждены решениями на других комплексах. Однако, основная СФЦ ДС и большая часть декомпозированных подсистем (включенных в данное ДС) рассматриваются в

предыдущих и следующих тестовых примерах, где выполнено подтверждение правильности их решений с помощью ПК АСМ СЗМА.

Выводы по результатам Теста №4

Рассмотренные в Тесте №4 примеры иллюстрируют и подтверждают следующие функциональности ПК АСМ СЗМА:

- Комплекс позволяет представлять деревья событий двумя способами: с помощью щью СФЦ с группами несовместных событий /примеры 4.1, 4.2/ и с помощью СФЦ с инверсными выходами вершин /примеры 4.3, 4.4 /;
- Корректность вычислений вероятностей реализации каждого отдельного из всех возможных вариантов сценария развития аварии /пример 4.1/, подтверждена совпадением результатов, полученных ПК АСМ СЗМА с данными, приведенными в литературных источниках [34], и с расчетами, выполненными комплексами Relex и Risk Spectrum [20];
- Корректность вычислений ПК АСМ СЗМА вероятностей реализации вариантов развития аварии, различающихся уровнями ожидаемых последствий /примеры 4.2, 4.3/, подтверждена их совпадением с данными, полученными ПК Relex, и ручными аналитическими расчетами. Причины несовпадения с результатами вычислений на ПК Risk Spectrum не ясны и нуждаются в дополнительном анализе;
- ОЛВМ, технология и ПК АСМ позволяют реализовать анализ качественносложных систем и рассчитывать показатели их реальной эффективности и полного риска функционирования опасных производственных объектов и ОИАЭ /пример 4.2 /.
- ПК АСМ СЗМА позволяет решать задачи анализа сценариев развития аварии с подключением различных видов структур подсистем /пример 4.4 / .

Расчетный и аналитический тест №5. ВЕРОЯТНОСТНЫЙ АНАЛИЗ БЕЗОПАСНОСТИ СИСТЕМЫ НА ОСНОВЕ ДЕРЕВА ОТКАЗОВ

Справка. Рассматриваемая задача разработана специалистами НТЦ "Промышленная безопасность" Ростехнадзора РФ [34]. Возможности решения этой задачи с помощью различных программных комплексов (ПК "Risk Spectrum", ПК "Relex" и ПК АСМ СЗМА) исследованы в совместной НИР трех организаций: ФГУП "СПбАЭП", ОАО "СПИК СЗМА" (Санкт-Петербург) и ИПУ РАН им. В.А.Трапезникова (Москва) [20].

5.1. Описание задачи

Требуется выполнить вероятностный анализ безопасности объекта автоматизированной заправки емкости нефтепродуктами. Исходное дерево отказов элементов, которые могут привести к отказу исследуемого объекта в целом, приведено в [34, стр.35, рис.2] и изображено на рис.31.

Рис. 31. Исходное дерево отказа заправочной станции

Требуется определить:

 минимальные пропускные сочетания (минимальные сечения отказов), обязательное (одновременное) возникновение которых достаточно для появления головного события (аварии) [34];

- минимальные отсечные сочетания (кратчайшие пути успешного функционирования) – набор исходных событий, который гарантирует отсутствие головного события при условии невозникновения ни одного из составляющих этот набор событий [34];
- рассчитать вероятность возникновения аварии (верхнего события дерева от-казов).

5.2. Формализованная постановка задачи в ПК АСМ СЗМА

На основе данных, приведенных в [34], и дерева отказов, изображенного на рис.31, разрабатывается соответствующая СФЦ исследуемой системы, необходимая для применения ПК АСМ СЗМА. Эта СФЦ приведена на Рис. 32.

Рис. 32. СФЦ дерева отказов заправочной станции

Эта СФЦ подобна исходному дереву отказов, что делает постановку задач данного класса в ПК АСМ СЗМА не сложнее традиционной технологии деревьев отказов.

Вероятности элементарных событий данного примера приведены в Табл. 19 и соответствуют параметрам элементов рассматриваемой системы, заданным в ([34], стр.36, табл.4).

N⁰	Описание события	p_i
1	Система автоматической выдачи дозы (САВД) оказалась отключенной (ошибка контроля исходного положения)	0,0005
2	Обрыв цепей передачи сигнала от датчиков объема дозы	0,00001
3	Ослабления сигнала выдачи дозы помехами (нерасчетное внешнее воздействие)	0,0001
4	Отказ усилителя-преобразователя сигнала выдачи дозы	0,0002
5	Отказ расходомера	0,0003
6	Отказ датчика уровня	0,0002
7	Оператор не заметил световой индикации о неисправности САВД (ошибка оператора)	0,005
8	Оператор не услышал звуковой сигнализации об отказе САВД (ошибка оператора)	0,001
9	Оператор не знал о необходимости отключения насоса по истечении заданного времени	0,001
10	Оператор не заметил индикации хронометра об истечении установленного времени заправки	0,004
11	Отказ хронометра	0,00001
12	Отказ автоматического выключателя электропривода насоса	0,00001
13	Обрыв цепей управления приводом насоса	0,00001

Табл. 19. Исходные события дерева отказов заправочной станции

<u>Пример 5.1. Определение минимальных пропускных сочетаний (минимальных сечений отказов) заправочной операции</u>

{Проекты. Tecm_5.Пример_5_1 }

Список минимальных пропускных сочетаний (аналог MCO) автоматически формируется в ПК ACM C3MA на основе СФЦ дерева отказов, изображенной на Рис. 33, и прямого логического критерия $Y_{asapuu} = y23$.

Рис. 33. Определение минимальных сечений на основе СФЦ дерева отказов

Полученный с помощью ПК АСМ СЗМА список (см. Рис. 33) представляется логической функцией, состоящей из следующих 27 конъюнкций:

$$Y_{a c a c a p u u} = y_{23} = x_1 \cdot x_7 \lor x_2 \cdot x_7 \lor x_3 \cdot x_7 \lor x_4 \cdot x_7 \lor x_5 \cdot x_6 \cdot x_7 \lor x_1 \cdot x_8 \lor x_2 \cdot x_8 \lor \lor x_3 \cdot x_8 \lor x_4 \cdot x_8 \lor x_5 \cdot x_6 \cdot x_8 \lor x_1 \cdot x_9 \lor x_2 \cdot x_9 \lor x_3 \cdot x_9 \lor x_4 \cdot x_9 \lor \lor x_5 \cdot x_6 \cdot x_9 \lor x_1 \cdot x_{10} \lor x_2 \cdot x_{10} \lor x_3 \cdot x_{10} \lor x_4 \cdot x_{10} \lor x_5 \cdot x_6 \cdot x_{10} \lor \lor x_1 \cdot x_{11} \lor x_2 \cdot x_{11} \lor x_3 \cdot x_{11} \lor x_4 \cdot x_{11} \lor x_5 \cdot x_6 \cdot x_{11} \lor x_{12} \lor x_{13}$$

$$(17)$$

Список минимальных пропускных сочетаний (аналог МСО) данной системы, полученный с помощью ПК АСМ СЗМА, точно совпадает:

- со списком, приведенным в методических указаниях РД 03-418-01 Госгортехнадзора РФ [34, стр.34];
- со списком минимальных сечений отказов, полученным с помощью программного кода Risk Spectrum и приведенным в отчете НИР [20] (см. приложение 4, стр.269, рис.2.12.11 и стр.270, сводная таблица результатов раздела 2.12);
- с логической моделью отказов данной системы, полученной с помощью программного модуля Relex Fault Tree (см. приложение 4, стр.270, сводная таблица результатов раздела 2.12).

<u>Пример 5.2. Определение минимальных отсечных сочетаний</u> (кратчайших путей успешного функционирования)

{Проекты.Tecm_5.Пример_5_2 }

Список минимальных отсечных сочетаний (аналог КПУФ) автоматически формируется в ПК АСМ СЗМА на основе СФЦ дерева отказов, изображенной на Рис. 32, и обратного логического критерия $Y_{desonachocmu} = \overline{Y}_{asapuu} = \overline{y}23 = y''23$.

Рис. 34. Определение КПУФ на основе СФЦ дерева отказов

Полученный с помощью ПК АСМ СЗМА список представляется логической функцией, состоящей из следующих 3 конъюнкций:

Список минимальных отсечных сочетаний (аналог КПУФ) данной системы, полученный с помощью ПК АСМ СЗМА, точно совпадает:

- со списком, приведенным в методических указаниях РД 03-418-01 Госгортехнадзора РФ [34, стр.37];
- с логической моделью отказов данной системы, полученной с помощью программного модуля Relex Fault Tree (см. отчет НИР [20], стр.270, сводная таблица результатов раздела 2.12).

86

Пример 5.3. Моделирование и расчет вероятности аварии системы на основе дерева отказов

{Проекты.Тест_5.Пример_5_3 }

Выполненный с помощью ПК АСМ СЗМА расчет вероятности аварии рассматриваемой системы (головного события заданного дерева отказов) выполнен для значений параметров элементов, указанных в табл.17. Результаты расчета приведены в Табл. 20:

н	Результаты расчетов		
Показатели безопасности	ПК АСМ СЗМА	Relex	Risk Spectrum
Вероятность возникновения аварии	0.000028884888	Relex Fault Tree 0.00002888 Relex RBD 0.0000288849	2.89E-5 = = 0.0000289

Табл. 20. Результаты решения примера 5.3

Результаты расчетов вероятности аварии на основе дерева отказов, выполненные с помощью ПК ACM C3MA, совпали с расчетами, выполненными с помощью программных модулей Relex Fault Tree, Relex RBD и ПК Risk Spectrum, приведенными в отчете [20] (см. приложение 4, стр.270, сводная таблица результатов раздела 2.12).

<u>Пример 5.4. Моделирование и расчет вероятности не возникновения аварии</u> <u>системы на основе дерева отказов</u>

Решение противоположной задачи (по критерию $Y_{desonachocmu} = \overline{Y}_{abapuu} = y''23$ на ПК ACM C3MA) позволяет вычислить вероятность безопасного (безаварийного) выполнения заправочной операции

{Проекты.Tecm_5.Пример_5_4 }.

Эта вероятность составила **0.999971115112**, что является точным дополнением приведенной в Табл. 20 вероятности возникновения аварии и подтверждает корректность решения прямых и обратных задач моделирования и вероятностных расчетов ПК ACM C3MA на основе деревьев отказов.

Выводы по результатам Теста №5

Рассмотренные в Тесте №5 примеры иллюстрируют и подтверждают следующие функциональные возможности ПК АСМ СЗМА.

- Используемый в ПК АСМ СЗМА графический аппарат СФЦ позволяет логически корректно описывать структурные модели безопасности систем, которые в исходной постанове представлены в виде деревьев отказов /все примеры Теста №5/;
- На основе СФЦ деревьев отказов ПК АСМ СЗМА автоматически определяет как прямые (МСО), так и обратные (КПУФ) логические модели безопасности и аварии (технического риска) исследуемых систем /примеры 5.1. и 5.2/, а также вычисляет соответствующие вероятностные показатели (технического риск и безопасности) /пример 5.3/;
- Правильность построения с помощью ПК АСМ СЗМА на основе СФЦ деревьев отказов прямых и обратных логических моделей и вычисления вероятностей (технического риска) возникновения аварии и/или безопасности (невозникновения аварии) подтверждена совпадением результатов с данными, приведенными в литературных источниках и полученными с помощью комплексов Risk Spectrum и Relex.

Расчетный и аналитический тест №6. ТИПОВЫЕ МОДЕЛИ ОТКАЗОВ ПО ОБЩЕЙ ПРИЧИНЕ

Справка. Рассматриваемые примеры учета типовых моделей отказов по общей причине на простой мостиковой структуре пятиэлементной системы были исследованы в совместной НИР трех организаций: ФГУП "СПбАЭП", ОАО "СПИК СЗМА" (Санкт-Петербург) и ИПУ РАН им. В.А.Трапезникова (Москва) [20].

6.1. Описание задачи

Функциональная структура исследуемой мостиковой системы представлена на Рис. 35 [20]:

Рис. 35. Функциональная схема мостиковой системы

Полагаем, что собственная вероятность безотказной работы всех элементов равна $p_i = 0.5, i = 1, 2, ..., 5$. Известно [20], что вероятность безотказной работы всей мостиковой системы (без учета ООП) в этом случае также равна

$$P_s = 0.5$$
 (19)

С помощью ПК АСМ СЗМА требуется вычислить вероятности безотказной работы или вероятности отказа данной мостиковой системы с учетом трех типовых моделей отказов по общей причине (модели альфа-фактора, бета-фактора и множественных греческих букв) для групп из двух, трех и четырех элементов.

6.2. Формализованная постановка задачи в ПК АСМ СЗМА

На Рис. 36 приведены два варианта СФЦ мостиковой системы (аналоги блок-схемы безотказности и дерева отказов), которые позволяют в ПК АСМ СЗМА построить модели и рассчитывать статическую вероятность ее безотказной работы (или отказа) без учета ООП.

Рис. 36. СФЦ мостиковой системы

В базовой версии ПК АСМ СЗМА первоначально был реализован только один структурный способ учета ООП. Поэтому на практике число элементов в группах ООП обычно не превышает четырех.

В ходе аттестации, при устранении замечаний экспертов, в ПК АСМ СЗМА был реализован второй способ - автоматического учета ООП групп элементов для тех же трех типовых моделей (альфа-фактора, бета-фактора и множественных греческих букв). Описание этого способа приведено в Примере 6.3.

Методика первого, структурного способа учета в ПК АСМ СЗМА групп элементов ООП исследуемых систем, включает в себя следующие действия.

- Разрабатывается СФЦ исследуемой системы (для данного примера это СФЦ на Рис. 36).
- Разрабатываются СФЦ деревьев ООП для выделенных групп элементов. На Рис. 37 изображены три типовые СФЦ деревьев ООП для групп из двух, трех и четырех элементов.

90

Рис. 37. Типовые СФЦ групп элементов ООП

- 3. Указанные два вида СФЦ (собственно исследуемой системы и групп ООП) объединяются в общую СФЦ системы, которая вводится в ПК АСМ СЗМА.
- 4. Вводятся параметры элементов системы, не входящих в группы ООП.
- 5. С помощью утилиты «Расчет вероятностей отказов по общей причине» (или отдельно) вычисляются и вводятся в ПК АСМ СЗМА собственные вероятности базовых событий выбранной типовой модели ООП.
- 6. Задается ЛКФ системы и включается режим «Моделирования и расчетов» ПК АСМ СЗМА.

Заданные на Рис. 37 номера функциональных вершин соответствуют одиночным и групповым отказам элементов 1, 2, 3 и 4, входящих в группы ООП (кроме единственного номера 444 вершины, которая представляет отказ по общей причине одновременно четырех элементов (и 1 и 2 и 3 и 4) рассматриваемой мостиковой системы).

<u>Пример 6.1. Расчет надежности мостиковой системы с использованием</u> <u>структурного способа учета модели Альфа-фактора ООП трех элемен-</u> <u>тов 1, 2 и 3</u>

На Рис. 38 изображена подготовленная общая СФЦ дерева отказов мостиковой системы и вспомогательная утилита расчета вероятностей базовых событий ООП группы из трех элементов.

{Проекты. Тест_6. Пример_6_1. Пример_6_1_Мостик_ДО_ООП_3_альфа.sfc}

Рис. 38. СФЦ и утилита расчета вероятностей базовых событий ООП

Заданные собственные вероятности отказов элементов, невходящих в группу ООП, равны

$$p_4 = p_5 = 0.5 \tag{20}$$

Входными параметрами Альфа-факторной модели выбраны:

$$Q_{tot} = 0.5; \ \alpha_1 = 0.925; \ \alpha_2 = 0.05; \ \alpha_1 = 0.025.$$
 (21)

С помощью вспомогательной программной утилиты (см. Рис. 38) вычислены вероятности одиночных и групповых ООП Альфа-факторной модели. Они составили (см. Рис. 38):

- вероятность одиночного отказа $p_1 = p_2 = p_3 = 0.42045454545454545$
- вероятность двойного отказа $p_{12} = p_{13} = p_{23} = 0.02272727272727272727$ (22)
- вероятность тройного отказа $p_{123} = 0.0340909090909091$

После ввода в ПК АСМ СЗМА подготовленной общей СФЦ дерева отказов мостиковой системы (см. Рис. 38), заданных вероятностей отказов элементов, не

входящих в группу ООП (20) и вычисленных с помощью утилиты базовых событий ООП (21), выполняется решение данной задачи по критерию отказа мостиковой системы

$$Y_{omkasa \ mocmuka} = y14 \tag{23}$$

Результаты решения с помощью ПК АСМ СЗМА приведены на Рис. 39.

Рис. 39. Результаты решения задачи на основе СФЦ дерева отказов мостика

На Рис. 40 приведено решение той же задачи, но с использованием блоксхемы работоспособности исследуемой мостиковой системы.

{Проекты. Тест_6. Пример_6_1. Пример_6_1_Мостик_Бл_Сх_ООП_3_альфа.sfc}

Рис. 40. Результаты решения задачи на основе СФЦ блок-схемы работоспособности мостика

В обоих случаях вычисленная с помощью ПК АСМ СЗМА вероятность отказа мостиковой системы с учетом ООП составила

$$P_{OTKA33a MOCTULKA} = 0.45966796 \ 8443 \tag{24}$$

Контрольное решение противоположной задачи по критерию

$$Y_{\text{безотказно сти мостика}} = \overline{Y}_{\text{отказа мостика}} = y''14$$
(25)

дало результат

$$P_{\delta e som ka sho cmu \, Mocmuka} = 0.54033203 \, 15573 \,, \tag{26}$$

который является точным дополнением вероятности (24) и подтверждает непротиворечивость прямого и обратного моделирования и расчетов данной задачи в ПК АСМ СЗМА.

<u>Пример 6.2. Расчеты надежности мостиковой системы с использованием</u> <u>структурного способа учета разных моделей и различных групп элементов</u> <u>ООП</u>

В процессе подготовки верификационного отчета с помощью ПК АСМ СЗМА для мостиковой системы (изображенной на Рис. 35) были решены 9 задач расчета надежности с учетом отказов по общей причине.

{Проекты. Тест_6. Пример_6_2. Мостик_Бл_Сх_ООП_2_альфа.sfc}
 18. {Проекты. Тест_6. Пример_6_2. Мостик_ДО_ООП_4_МГБ.sfc}

Входные данные этих задач и результаты расчетов приведены в Табл. 21. Для каждой из 9 указанных задач получено два решения - на основе блок-схемы безотказности и на основе дерева отказов мостиковой системы (см. Рис. 36).

Все приведенные в Табл. 21 результаты решения задач на ПК АСМ СЗМА совпали с контрольными решениями этих же задач на ПК Relex, выполненными специалистами ИПУ РАН по просьбе ОАО "СПИК СЗМА".

Типовые модели ООП в мостиковой системе			
Модель ООП	Альфа-фактор	Бета-фактор	МГБ
Параметры модели	$Q_{tot} = 0.5$ $\alpha_1 = 0.95$ $\alpha_2 = 0.05$	$\begin{array}{l} Q_{tot} = 0.5\\ \beta = 0.05 \end{array}$	$\begin{aligned} Q_{tot} &= 0.5\\ \rho_1 &= \beta = 0.05 \end{aligned}$
Группа ООП - 2	Число элементов в группе ООП = 2. Номера эл-тов группы ООП в мостиковой системе: $i = 1, 2$		
Вероятности базис- ных событий	Q1 = 0.452381 Q2 = 0.047619	Q1 = 0.475 Q2 = 0.025	Q1 = 0.475 Q2 = 0.025
Вероятность отказа мостиковой системы с учетом ООП	0.490875715	0.494523437	0.494523437
Группа ООП - 3	Число элементов в гру Номера эл-тов группь	уппе ООП = 3. 1 ООП в мостиковой си-	стеме: <i>i</i> = 1, 2, 3
Параметры модели	$Q_{tot} = 0.5 \alpha_1 = 0.925 \alpha_2 = 0.05 \alpha_3 = 0.025$	$Q_{tot} = 0.5$ $\beta = 0.05$	$Q_{tot} = 0.5$ $\rho_2 = \beta = 0.05$ $\rho_3 = \gamma = 0.025$
Вероятности базис- ных событий	Q1 = 0.42045454545Q2 = 0.02727272727Q3 = 0.03409090909	Q1 = 0.475 Q2 = 0.0 Q3 = 0.025	Q1 = 0.475 $Q2 = 0.0121875$ $Q3 = 0.000625$
Вероятность отказа мостиковой системы с учетом ООП	0.459667968	0.485085742	0.48659623
Группа ООП - 4	Число элементов в группе ООП = 4. Номера эл-тов группы ООП в мостиковой системе: <i>i</i> = 1,2, 3, 4		
Параметры модели	$Q_{tot} = 0.5$ $\alpha_1 = 0.9083333$ $\alpha_2 = 0.05$ $\alpha_3 = 0.025$ $\alpha_4 = 0.0166666$	$Q_{tot} = 0.5$ $\beta = 0.05$	$\begin{array}{l} Q_{tot} = 0.5 \\ \rho_2 = \beta = 0.05 \\ \rho_3 = \gamma = 0.025 \\ \rho_4 = \delta = 0.016667 \end{array}$
Вероятности базис- ных событий	Q1 = 0.394927536 $Q2 = 0.014492753$ $Q3 = 0.010869565$ $Q4 = 0.028985507$	Q1 = 0.475Q2 = 0.0Q3 = 0.0Q4 = 0.025	Q1 = 0.475 $Q2 = 0.008125$ $Q3 = 0.00020486$ $Q4 = 1.04167E - 5$
Вероятность отказа мостиковой системы с учетом ООП	0.4282495	0.475967969	0.482186472

Табл. 21. Результаты решения примеров 6.2 с помощью ПК АСМ СЗМА и ПК Relex

Одна из указанных в табл.20 задач (модель "Альфа фактора" группы ООП элементов 1 и 2) была решена в НИР [20] с помощью двух других ПК:

1. С помощью ПК Relex получена вероятность **0.490876** отказа мостиковой системы (см. НИР [20], сводная таблица 2.4, пример 7), что точно совпадает с результатом решения этой задачи с помощью ПК АСМ СЗМА (см. Табл. 21).

 С помощью ПК Risk Spectrum специалистами СПбАЭП получены два других значения вероятности отказа мостиковой системы с учетом ООП - 0,5531 и 0.5152 (1-й и 3-й уровень аппроксимации, см. НИР [20], сводная таблица 2.4, пример 7; и стр.178). Эти результаты ПК Risk Spectrum не совпадают с решениями ПК Relex, приведенным в НИР [20], и ПК АСМ СЗМА, приведенными в данном отчете.

В ходе аттестации выяснилось, что причина указанного расхождения заключается в том, что ПК Relex (в НИР [20], приложение 4) и ПК АСМ СЗМА выполняли вычисления на основе точных многочленов вероятностных функций, а в ПК Risk Spectrum использовались приближенные методы расчетов. Теперь (после реализации в ПК АСМ СЗМА режима "Приближенный расчет") это можно подтвердить, выполнив решение данной задачи с помощью ПК АСМ СЗМА в режиме "Приближенный расчет":

19. {Проекты.Tecm_6.Пример_6_2. Мостик_ДО_ООП_2_0_5_альфа_приближенный.sfc }

В результате получено приближенное значение *0.553126061089* вероятности отказа мостиковой системы с учетом ООП, которое совпадает с решением ПК Risk Spectrum, приведенным в НИР [20] (см. приложение 4, сводная таблица 2.4, пример 7; и стр.178).

3. В НИР [20] было выполнено еще одно решение данной задачи, с помощью ПК Risk Spectrum, при уменьшенных значениях собственных вероятностей отказов всех элементов мостиковой системы, с 0.5 до 0.00001, и прежних параметрах ООП элементов 1 и 2. Вычисленная, в этом случае, с помощью ПК Risk Spectrum, вероятность отказа мостиковой системы составила 0.0000009526 (см. приложение 4, стр.179, рис.2.4.13).

При решении этой задачи с помощью ПК АСМ СЗМА получены точная

20. {Проекты. Tecm_6. Пример_6_2. Мостик_ДО_ООП_2_0_00001_альфа_точный.sfc }

21. {Проекты. Тест_6. Пример_6_2. Мостик_ДО_ООП_2_0_00001_альфа_приближенный.sfc }

вероятности отказа мостиковой системы с учетом ООП. Они имеют одинаковое значение, равное **0.000000952563.** С точностью до округления оно совпадает с приближенным решением ПК Risk Spectrum. Здесь, совпадение точного и приближенного решений обусловлено очень малыми значениями (**0.00001**) вероятностей отказов элементов мостиковой системы.

Приведенные в Примерах 6.1 и 6.2 результаты позволяют сделать заключение о корректности, реализованной в ПК АСМ СЗМА структурной методики учета типовых моделей ООП групп до 4 элементов. При этом ПК АСМ СЗМА позволяет вычислять как точные значения (совпадают с расчетами ПК Relex), так и приближенные значения (совпадают с расчетами ПК Risk Spectrum) системных вероятностей с учетом ООП во всем возможном диапазоне значений вероятностных параметров элементов.

<u>Пример 6.3. Расчет надежности мостиковой системы с использованием способа автоматического учета разных моделей и различных групп</u> элементов ООП

Справка. Данный пример является новым и в первой редакции текста Отчета о верификации ПК ACM C3MA отсутствует. Он разработан в процессе экспертизы ПК ACM C3MA при подготовке ответов на следующие вопросы и замечания:

- коллег эксперта Бахметьева А.М. от 17 февраля 2006 г.:

9.1. Реализован ли в ПК АСМ СЗМА автоматический учет ООП и в каком виде?

9.2. Вручную или автоматически строится СФЦ деревьев ООП?

- эксперта Бахметьева А.М. от 27 марта 2006 г.:

8. Для использования ПК ACM C3MA с целью анализа надежности систем безопасности вероятностного анализа аварий, по нашему мнению необходимо:

- производить автоматизированный учет ООП с представлением элементов, определяющих ООП в наборах МС;

... это является обязательным нормативным требованием.

В ответах экспертам на эти вопросы и требование, было сообщено, что аттестуемая базовая версию ПК АСМ СЗМА ПК АСМ СЗМА, в ходе экспертизы, будет дополнена функцией автоматического учета трех типовых моделей ООП (альфа-фактора, бета-фактора и множественных греческих букв). Задачи данного Примера 6.3 иллюстрируют результаты этой доработки и устранения указанного замечания.

В Примере 6.3 повторены решения всех предыдущих задач (примеры 6.1 и 6.2), но с способом автоматического учета ООП в ПК АСМ СЗМА.

Методика автоматического учета ООП в ПК АСМ СЗМА, включает в себя следующие основные действия (см. также Инструкцию пользователя ПК АСМ СЗМА, §4.5).

- 1. Разрабатывается СФЦ исследуемой системы (для рассматриваемого примера это СФЦ, изображенные на Рис. 36).
- 2. Если разработанная СФЦ представляет дерево отказов, в котором все функциональные вершины представляют базисные события отказов элементов, то далее она используется без изменений (см. Рис. 36).
- 3. Если разработанная СФЦ представляет структуру безотказности системы (например, блок-схему, изображенную на Рис. 36), в которой функциональные вершины представляют события безотказной работы элементов, то для автоматического учета ООП требуется ее корректировка, которая заключается в следующем:
 - выделяются функциональные вершины, которые входят в группы ООП;
 - в СФЦ они заменяются головными вершинами, представляющими отказы соответствующих элементов;
 - в исходной СФЦ безотказности системы они вводятся с помощью инверсных конъюнктивных связей с вспомогательными фиктивными вершинами.

Так, если в рассматриваемой СФЦ блок-схемы безотказности (см. Рис. 36) группу ООП составляют элементы 1, 2 и 3, то ее откорректированная форма (для автоматического учета ООП) имеет вид, изображенный на Рис.41

Рис. 41. Откорректированная СФЦ блок-схемы безотказности мостиковой системы

- После загрузки СФЦ в ПК АСМ СЗМА все элементы ООП группируются и им задаются соответствующие параметры. Правила формирования групп и ввода параметров ООП описаны в §4.5 Инструкции пользователя ПК АСМ СЗМА.
- В ПК АСМ СЗМА вводятся параметры элементов, не входящих в группы ООП, задается ЛКФ системы и включается кнопка «Моделирование и расчет».

На Рис.42 приведены результаты подготовки и автоматического решения (на основе СФЦ блок-схемы мостиковой системы), задачи, ранее решенной в Примере 6.1 структурным методом учета ООП (см. Рис.40).

{ Проекты. Тест_6. Пример_6_3. Пример_6_1_автомат. Мостик_Бл_Сх_ООП_3_альфа_автомат.sfc }

Рис. 42. Ввод параметров группы и результаты автоматического учета ООП на основе СФЦ блок-схемы работоспособности мостика

На Рис.43 приведены результаты решения той же задачи, на основе СФЦ дерева отказов мостиковой системы (в Примере 6.1 она решена структурным методом учета ООП, см. Рис.39).

{ Проекты. Тест_6. Пример_6_3. Пример_6_1_автомат. Мостик_ДО_ООП_3_альфа_автомат.sfc }

Рис. 43. Ввод параметров группы и результаты автоматического учета ООП на основе СФЦ дерева отказов мостика

Оба результата вычисления вероятности отказа мостиковой системы с автоматическим учетом группы из 3 элементов ООП Альфа-фактора, совпали с решением (24), полученным ранее структурным способом. Этот результат также совпал с решением, полученным с помощью ПК "Relex" (см. Табл. 21).

Противоположные решения этого примера и расчет вероятности безотказной работы мостиковой системы с автоматическим учетом ООП также совпал с ранее полученным и поверенным результатом (26).

В папке *{Проекты. Tecm_6. Пример_6_3. Пример_6_2_автомат.}* размещены 18 проектов двух вариантов 9-и задач, ранее уже решенных в Примере 6.2, способом структурного учета различных групп ООП:

1.	{Проекты.Тест_6.Пример_6_3. Пример_6_2_автомат. Мостик_Бл_Сх_ООП_2_альфа_автомат.sfc }
9.	{Проекты. Тест_6. Пример_6_3. Пример_6_2_автомат. Мостик Бл Сх ООП 4 МГБ апвтомат.sfc }
10	{Проекты.Tecm_6.Пример_6_3. Пример_6_2_автомат. Мостик_ДО_ООП_2_альфа_автомат.sfc}
18.	{Проекты.Tecm_6.Пример_6_3. Пример_6_2_автомат. Мостик_ДО_ООП_4_МГБ_автомат.sfc}

100

Результаты решения указанных задач Теста №6, полученные в ПК АСМ СЗМА средствами автоматического учета различных групп и типов ООП, совпали с аналогичными показателями, ранее вычисленными с помощью ПК АСМ СЗМА структурным способом и решениями, полученными с помощью аттестованного ПК Risk Spectrum и широко используемого ПК Relex (см. табл.20 и НИР [20]).

Следующие три решения на ПК АСМ СЗМА примеров

19. {Проекты. Тест_6. Пример_6_3. Мостик_ДО_ООП_2_0_5_альфа_приближенный_автомат.sfc }

20. {Проекты. Тест_6. Пример_6_3. Мостик_ДО_ООП_2_0_00001_альфа_точный_автомат.sfc }

21. {Проекты. Tecm_6. Пример_6_3. Мостик_ДО_ООП_2_0_00001_альфа_приближенный_автомат.sfc }

являются повторениями, в режиме автоматического учета ООП, задач из НИР [20], по которым имеются результаты, полученные с помощью ПК Risk Spectrum. Решения этих задач, в режиме автоматического учета ООП, полностью совпали с рассмотренными ранее (см. "Пример.6.2") результатами их структурного решения на ПК ACM C3MA, а также решениями на ПК Risk Spectrum и ПК Relex.

Используя режим "Приближенный расчет" были повторены решения всех 18 задач Примера 6.2.

 {Проекты. Тест_6. Пример_6_3. Примеры_6_2_автомат_Risk_Spectrum. Мостик_Бл_Сх_ООП_2_альфа_автомат_RS.sfc}
 18. {Проекты. Тест_6. Пример_6_3. Примеры_6_2_автомат_Risk_Spectrum. Мостик ДО ООП 4 МГБ автомат_RS.sfc

Полученные результаты автоматического моделирования и приближенного расчета с помощью ПК АСМ СЗМА показателей надежности мостиковой системы с учетом трех моделей ООП приведены в табл.22.

Табл. 22. Результаты решения примеров 6.2 с помощью ПК АСМ СЗМА по методике ПК Risk Spectrum

Типовые модели ООП в мостиковой системе			
Модель ООП	Альфа-фактор	Бета-фактор	МГБ
Параметры модели	$Q_{tot} = 0.5$ $\alpha_1 = 0.95$ $\alpha_2 = 0.05$	$\begin{array}{l} Q_{tot} = 0.5\\ \widetilde{\beta} = 0.05 \end{array}$	$\begin{array}{l} Q_{tot} = 0.5\\ \rho_1 = \beta = 0.05 \end{array}$
Группа ООП - 2	Число элементов в группе ООП = 2. Номера эл-тов группы ООП в мостиковой системе: $i = 1, 2$		
Вероятности базис- ных событий	Q1 = 0.452381 Q2 = 0.047619	Q1 = 0.475 Q2 = 0.025	Q1 = 0.475 Q2 = 0.025
Вероятность отказа мостиковой системы с учетом ООП	0.553126061089	0.560240264435	0.5602402644
Группа ООП - 3	Число элементов в гру Номера эл-тов группь	уппе ООП = 3. 1 ООП в мостиковой си	стеме: <i>i</i> = 1, 2, 3
Параметры модели	$Q_{tot} = 0.5 \alpha_1 = 0.925 \alpha_2 = 0.05 \alpha_3 = 0.025$	$Q_{tot} = 0.5$ $\beta = 0.05$	$\begin{array}{l} Q_{tot} = 0.5 \\ \rho_2 = \beta = 0.05 \\ \rho_3 = \gamma = 0.025 \end{array}$
Вероятности базис- ных событий	Q1 = 0.42045454545Q2 = 0.02727272727Q3 = 0.03409090909	Q1 = 0.475 Q2 = 0.0 Q3 = 0.025	Q1 = 0.475 Q2 = 0.0121875 Q3 = 0.000625
Вероятность отказа мостиковой системы с учетом ООП	0.525658747986	0.549898633301	0.5577808559
Группа ООП - 4	Число элементов в группе ООП = 4. Номера эл-тов группы ООП в мостиковой системе: $i = 1, 2, 3, 4$		
Параметры модели	$Q_{tot} = 0.5 \alpha_1 = 0.9083333 \alpha_2 = 0.05 \alpha_3 = 0.025 \alpha_4 = 0.01666666$	$Q_{tot} = 0.5$ $\beta = 0.05$	$\begin{array}{l} Q_{tot} = 0.5 \\ \rho_2 = \beta = 0.05 \\ \rho_3 = \gamma = 0.025 \\ \rho_4 = \delta = 0.016667 \end{array}$
Вероятности базис- ных событий	Q1 = 0.394927536 $Q2 = 0.014492753$ $Q3 = 0.010869565$ $Q4 = 0.028985507$	Q1 = 0.475Q2 = 0.0Q3 = 0.0Q4 = 0.025	Q1 = 0.475 $Q2 = 0.008125$ $Q3 = 0.00020486$ $Q4 = 1.04167E - 5$
Вероятность отказа мостиковой системы с учетом ООП	0.486018603834	0.539809031074	0.5539903216

Полагаем, что все результаты, приведенные в табл.22, должны совпасть с решениями этих задач с помощью ПК Risk Spectrum, в режиме вычислений "минимальной верхней границей сечения".

Выводы по результатам Теста №6

Рассмотренные в Тесте №6 примеры иллюстрируют и подтверждают следующие функциональные возможности ПК АСМ СЗМА:

- В базовой версии ПК АСМ СЗМА реализованы два способа учета ООП:
- структурный, основанный на ручном построении в СФЦ дерева отказов каждой группы элементов, входящих в ООП /задачи примеров 6.1 и 6.2/;
- автоматический, в котором для каждой группы указываются только состав элементов, тип ООП и соответствующие параметры /все задачи примера 6.3/;
 - Расчет вероятностных показателей систем с учетом ООП выполняется в ПК АСМ СЗМА для трех типовых моделей - альфа-фактора, бета-фактора и множественных греческих букв /все примеры теста №6/;
 - Правильность решения ПК АСМ СЗМА примеров, приведенных в тесте №6, подтверждены сопоставлением полученных ПК АСМ СЗМА результатов с решениями на аттестованном ПК Risk Spectrum (приближенные вычисления показателей) и ПК Relex (точные вычисления показателей) для гипотезы о независимости всех событий, включая ООП.

Расчетный и аналитический тест №7. НЕТИПОВЫЕ МОДЕЛИ ОТКАЗОВ ПО ОБЩЕЙ ПРИЧИНЕ

<u>Пример 7.1. Оценка вероятности незапуска системы из трех генераторов с</u> <u>учетом ООП</u>

Справка. Пример описан в книге "Методы оценки и обеспечения безопасности ЯЭУ" [61, с.118].

Рассматривается система, состоящая из трех дизель-генераторов (см. [61], стр.118). Для выполнения системой функции безопасности достаточно работы одного агрегата. Полагается, что вероятность незапуска одного отдельного дизель-генератора составляет $p_i = 0.03, i = 1,2,3$. При этом, на один независимый отказ приходится $\delta_2 = 0.1$ и $\delta_3 = 0.01$ отказов по общей причине соответственно двух и трех агрегатов. Требуется рассчитать вероятность отказа системы при пуске с учетом независимых отказов элементов и возможных отказов по общей причине.

Первый вариант решения примера 7.1

{Проекты. Тест_7. Пример_7_1. Пример_7_1_вариант_1.sfc}

Результаты первого варианта решения данного примера с помощью ПК АСМ СЗМА приведены на Рис. 44.

Рис. 44. Результаты первого варианта решения примера 7.1

Функциональные вершины 1, 2 и 3 СФЦ на Рис. 44 представляют независимые отказы по надежности соответствующих элементов 1, 2 или 3 системы. При заданных вероятностях незапуска дизель-генераторов $p_i = 0.03, i = 1,2,3$ решение по критерию y7 ПК АСМ СЗМА дает результат P = 0.000027 расчета вероятности отказа системы без учета ООП (надежность без учета ООП). Этот результат точно совпадает с оценкой этого показателя, приведенной в [61, с.118].

Функциональные вершины 12, 13, 23 и 123 представляют в СФЦ на Рис. 44 возможные групповые отказы агрегатов системы по общей причине (1 и 2, 1 и 3, 2 и 3, 1 и 2 и 3 соответственно). Согласно заданным в [61] параметрам, вероятности ООП группы из двух агрегатов составляют $p_{12} = p_{13} = p_{23} = p_i \delta_2 = 0.003$, а трех агрегатов $p_{123} = p_i \delta_3 = 0.0003$.

Общей причиной отказа группы из двух элементов является независимый отказ по надежности элемента, не входящего в эту группу.

Условием ООП трех элементов является независимый отказ хотя бы одного элемента по надежности. Эти условия представлены в СФЦ на Рис. 44 фиктивными вершинами 4, 5, 6 и 11.

Все отдельные групповые отказы по своему определению являются несовместными. Для ввода в ПК АСМ СЗМА этого условия вершины 12, 13, 23 и 123 объединяются в группу несовместных событий №1 (см. рис.44, "Группа 1 (НС)").

Отказы системы по надежности и по общим причинам считаются независимыми, т.е. могут происходить как отдельно, так и совместно друг с другом.

Для указанных условий отказ всей системы (с учетом надежности элементов и ООП) представляется критерием $Y_{omkasa} = y10$. Он определяет событие отказа системы, как отказ по причинам ненадежности всех трех элементов (y7) или какой-либо групповой отказ по общей причине (y8).

Решение данного примера с помощью ПК АСМ СЗМА по критерию $Y_{omkasa} = y10$ дает результат

$$P_{omka3a} = 0.00032294 \ 7 \tag{27}$$

Эта вероятность незапуска системы из трех дизель-генераторов, с учетом ООП, на порядок больше оценки только ее надежности (0.000027), что согласуется с физическим смыслом исследуемого процесса. Однако, полученный результат (27) не совпадает с расчетом этого показателя (0.6·10⁻³), приведенным в первоисточнике [61, c.118].

Второй вариант решения примера 7.1

{Проекты. Тест_7. Пример_7_1. Пример_7_1_вариант_2.sfc}

В [61, с.118] приведено аналитическое решение рассматриваемого примера. В принятых здесь обозначениях оно составляет

$$P_{omka3a} = p_i^3 + 3p_i\delta_2p_i + \delta_3p_i = 0.000597 \approx 0.6 \cdot 10^{-3}$$
(28)

Анализ выражения (28) позволяет сделать следующие заключения:

- отказы элементов 1, 2, и 3 по надежности являются независимыми в совокупности;
- отказы системы по надежности и по общим причинам считаются несовместными событиями;
- отказ одного элемента по надежности является общей причиной отказа двух других элементов с вероятностью δ₂ p_i;
- тройной ООП возникает с вероятностью *δ*₃*p*_i независимо от событий отказов элементов по надежности;
- отказы всех групп элементов по общей причине являются несовместными событиями.

Эти условия несколько отличаются от общего описания этой задачи, рассмотренного в примере 7.1.

На Рис. 45 приведены результаты второго варианта решения рассматриваемого примера на ПК АСМ СЗМА, в котором учтены отмеченные выше новые особенности аналитического решения (28).

Рис. 45. Результаты второго варианта решения примера 7.1

Учет несовместности отказов системы по надежности и по общим причинам выполнен с помощью декомпозиции фрагмента СФЦ "Надежность" (Рис. 44, вершины 1, 2, 3 и 7). Для этого указанный фрагмент представлен в СФЦ на Рис. 45 эквивалентированной вершиной с номером 7. Ее подграф СФЦ (вершины 7_1, 7_2, 7_3 и 7_7) представляет декомпозированную структурную модель надежности. Это позволило сохранить условия независимости отказов элементов по надежности "внутри" декомпозированного фрагмента и ввести номер эквивалентированной вершины 7 в состав Группы 1 (НС).

В основной СФЦ, вершины 1, 2 и 3 независимых отказов элементов теперь используются для представления общих причин возникновения групп двойных отказов (12, 13 и 23). Головная вершина 123 представляет независимое условие возникновения отказа всех трех элементов по общей причине.

Выполненное ПК АСМ СЗМА моделирование и расчет второго варианта примера дал результат

$$P_{\rm omka3a} = 0.000597 \,, \tag{29}$$

что точно совпадает с аналитическим решением, приведенным в [61, с.118].

107

Пример 7.2. Учет ООП в системе с коллекторной структурой

Справка. Пример описан в книге "Методы оценки и обеспечения безопасности ЯЭУ" [61, с.118-119].

На Рис. 46 приведена функциональная структура системы, построенной по коллекторной схеме [61].

Рис. 46. Коллекторная схема системы

В данной системе имеются три группы элементов ООП - {1, 2}, {3, 4} и {5, 6}. Из-за наличия связей между парами однотипных дублирующих элементов в группах при независимом отказе одного из них может произойти отказ по общей причине дублирующего элемента. В данном примере считается, что независимый отказ каждого элемента во всех трех группах происходит с одинаковой вероятностью $p_i = 0.01$, i = 1, 2, ..., 6. Параметр ООП для элементов всех групп равен $\delta_2 = 0.1$ и определяет вероятность возникновения ООП одного любого дублируемого элемента системы. Требуется вычислить вероятность отказа всей коллекторной системы с учетом ООП указанных трех групп элементов.

Первый вариант решения примера 7.2

{Проекты.Тест_7.Пример_7_2.Вариант_1}

Результаты первого варианта решения этой задачи с помощью ПК АСМ СЗМА приведены на Рис. 47.

Рис. 47. Результаты первого варианта решения примера 7.2

В СФЦ на Рис. 47 функциональные вершины 1, 2, 3, 4, 5 и 6 представляют независимые отказы (по надежности) элементов исследуемой системы $(p_1 = p_2 = ... = p_6 = 0.01)$. В соответствии с заданной функциональной структурой (см. Рис. 46) отказ по надежности системы в целом наступает при условии совместного отказа (сечения) хотя бы одной из трех групп элементов 1 и 2, 3 и 4 или 5 и 6. Эти условия представлены в СФЦ с помощью фиктивных вершин 14, 15, 16 и выходной вершиной 24, которая является критерием отказа, только по причинам ненадежности элементов, рассматриваемой системы в целом.

$$Y_{\mu} = y24 \tag{30}$$

Функциональные вершины 12, 21, 34, 43, 56, 65 представляют события отказов по общей причине дублирующих элементов в группах {1,2}, {3,4} и {5,6} $(p_{12} = p_{21} = p_{34} = p_{43} = p_{56} = p_{65} = \delta_2 = 0.1)$. Условиями указанных событий ООП являются независимые отказы соответствующих отдельных элементов группы, что представлено в СФЦ их последовательным соединением. Свершение хотя бы одного из группы событий ООП приводит к отказу исследуемой системы в целом. С помощью фиктивных вершин 17, 18 и 19 в СФЦ представлены логические условия отказа системы вследствие всех возможных независимых отказов элементов и ООП в каждой группе. Выходная вершина 20 является критерием отказа по надежности и ООП исследуемой системы в целом

$$Y_{H+O\Pi} = y20 \tag{31}$$

Решение ПК АСМ СЗМА данного примера по критерию (30) дает результат оценки вероятности отказа исследуемой системы только по надежности, равный

$$P_{\rm H} = 0.00029997\ 0001 \tag{32}$$

Решение на основе критерия (31) позволяет вычислить полную вероятность отказа исследуемой системы по надежности и общим причинам

$$P_{H+O\Pi} = 0.00622702\,9799\tag{33}$$

Эта вероятность существенно больше результата (32), что согласуется с физическим смыслом исследуемого процесса. Однако, она не совпадает со значением $3,3 \cdot 10^{-3}$ вероятности этого события, вычисленного в [61, с.119].

Второй вариант решения примера 7.2 {Проекты. Тест 7. Пример 7 2. Вариант 2}

В [61, с.118] приведено аналитическое решение рассматриваемого примера.

$$P_{H+O\Pi} = 3p_i^3 + 3\delta_2 p_i = 0.0033.$$
(34)

Анализ выражения (34) позволяет сделать соответствующие корректировки модели, разработанной в предыдущем примере 7.1:

- Согласно (34) отказы по надежности всех трех групп дублированных элементов системы {1,2}, {3,4} и {5,6} считаются несовместными событиями. В СФЦ это учтено с помощью Группы 1 (НС) (см. Рис.46) в которую вошли элементы, с номерами 1, 3 и 5 системы;
- В каждой дублированной группе из двух элементов отказ только одного может привести к возникновению ООП другого элемента группы. В СФЦ это можно учесть, удалив из структурной схемы (см. рис.47) вершины 21, 43 и 65;

События ООП всех трех групп и отказы самой системы по надежности и ООП являются (согласно (34)) несовместными. В СФЦ это можно учесть, включая элементы системы с номерами 2, 4 и 6, 12, 34 и 56 в "Группу 2 (НС) (см. Рис.48).

Преобразованная указанным образом СФЦ исследуемой системы приведена на Рис. 48.

Рис. 48. Результаты второго варианта решения примера 7.2

Выполненное с помощью ПК АСМ СЗМА моделирование и расчет второго варианта этого примера дал результат

$$P_{H+O\Pi} = 0.0033, \tag{35}$$

что точно совпадает с аналитическим решением (34) приведенном в первоисточнике [61, с.119].

Выводы по результатам Теста №7

Рассмотренные в Тесте №7 примеры иллюстрируют и подтверждают следующие функциональные возможности ПК АСМ СЗМА.

- Аппарат СФЦ позволяет представлять, а ПК АСМ СЗМА корректно учитывать в моделях и показателях различные нетиповые, но логически формализуемые, виды общих причин, приводящих к отказам отдельных и групп элементов системы /все примеры Теста 7/.
- При учете нетиповых ООП в ПК АСМ СЗМА могут использоваться аппараты групп несовместных событий, и односвязной структурной декомпозиции /пример 7.1, вариант 2 и пример 7.2, вариант 2/
- Правильность решений рассмотренных в тесте двух примеров /пример 7.1, вариант 2 и пример 7.2, вариант 2/ подтверждена совпадением результатов, полученных ПК АСМ СЗМА, с аналитическими решениями этих задач в первоисточнике [61].

Расчетный и аналитический тест №8. МОДЕЛИ КОМБИНАТОРНЫХ ПОДСИСТЕМ

В отличие от ряда известных программных комплексов (Relex, Risk Spectrum, CRISS 4.0 и др.) в СФЦ базовой версии ПК АСМ СЗМА отсутствуют (в настоящее время) специальные графические средства представления комбинаторных отношений K/N (не менее K из N) между элементами и подсистемами. Для представления таких комбинаторных (мажоритарных) отношений небольшой размерности (до N = 8) в ПК АСМ СЗМА могут использоваться непосредственно стандартные графические средства СФЦ (см., например, СФЦ на Рис. 16, 27 и 28).

На Рис. 49 приведены четыре примера представления в СФЦ комбинаторных отношений размерности К/2, К/3, К/4 и К/8 способом дизъюнктивного треугольника.

Рис. 49. Примеры представления комбинаторных отношений в СФЦ

Использование подобных структур для представления комбинаторных подсистем большей размерности допустимо, но при этом может существенно возрасти время построения логических моделей исследуемых систем. Поэтому, для обеспечения возможности расчета вероятностных показателей надежности систем, содержащих односвязные комбинаторные подсистемы большей размерности, в ПК АСМ СЗМА внедрены две специальные программные утилиты автономного расчета характеристик высокоразмерных комбинаторных подсистем (см. Инструкцию пользователя, §13 и §14).

<u>Пример 8.1. Расчет статических вероятностных показателей</u> комбинаторной подсистемы К/8

На Рис. 50 приведены результаты моделирования и расчета вероятности комбинаторной комбинации 4/8 исследуемой комбинаторной подсистемы.

{Проекты.Tecm_8.Пример_8_1. Пример_8_1_вариант_у408}

Рис. 50. Результаты расчета вероятности комбинаторной комбинации 4/8 в основном модуле ПК АСМ СЗМА

$$p_1 = 0.01, \quad p_2 = 0.02, \quad p_3 = 0.03, \quad p_4 = 0.04, \\ p_5 = 0.05, \quad p_6 = 0.06, \quad p_7 = 0.07, \quad p_8 = 0.08.$$
 (36)

С помощью ПК АСМ СЗМА вычислена вероятностная характеристика комбинаторной подсистемы 4/8, равная

$$P_{4/8} = 0.00019873\,5864 \tag{37}$$

Определены все 70 комбинаций 4 элементов из 8, которые составили

На Рис. 51 приведено решение этой же задачи, с помощью утилиты формирования комбинаций.

Рис. 51. Результаты расчета вероятности комбинаторной комбинации 4/8 с помощью утилиты формирования комбинаций

Полученный результат полностью совпал с решением (34) и логической функцией (38). Дополнительно, данная утилита вычисляет приближенную вероятность комбинаторных событий по методике, используемой в ПК "Risk Spectrum". В технической документации на этот комплекс она названа "минимальной верхней границей сечения"

$$Q_{TOP,MCUB} = 1 - \prod_{i=1}^{n} (1 - Q_{MCS,i})$$
(39)

Вычисленная по формуле приближенная вероятность комбинаторного события 4/8 рассматриваемого примера составила

$$P_{4/8} \approx 0.00022446\ 5540802576$$
 , (40)

что отличается от результата (37). Причиной этого расхождения является нарушение известного условия, когда применение результатов вычислений по методике (39) допускается, если значения вероятностей отказов элементов (базисных событий МСО) $p_i \leq 0.01$. В (36) данное условие не выполняется.

Отметим, что результат (40) можно получить и с помощью ПК АСМ СЗМА. Для этого в данном примере необходимо только установить режим "Приближенные вычисления" и нажать кнопку "Моделирование и расчет".

С помощью указанных двух способов (непосредственно ПК АСМ СЗМА на основе СФЦ и утилитой формирования комбинаций) были выполнены расчеты вероятностей реализации и не реализации всех комбинаций К/8.

Результаты решения этих задач приведены в Табл. 23

NG			Число	Вероятность $P_{K/N}$			
_л⁰ п/п	K/N	ЛКФ	комбина-	ПК АСМ СЗМА	Методика (39)		
			ЦИЙ	Утилита ФК	Risk Spectrum		
1	1 /0	<i>y</i> 108	8	0.309718121368	0.309718121367808		
2	1/8	<i>y</i> "108	1	0.690281878632	0.690281878632192		
3	- 2/8	y208	28	0.046175140473	0.0532141211850885		
4		y"208	8	0.953824859527	0.999966104554055		
5	- 3/8	y308	56	0.003901735513	0.00452606101392006		
6		y"308	28	0.996098264487	1.0		
7	4/0	y408	70	0.000198735864	0.000224465540802576		
8	4/8	y"408	56	0.999801264136	1.0		
9	<i>E</i> /0	y508	56	0.000006154076	6.72837823278982E-6		
10	3/8	y"508	70	0.999993845924	1.0		
11	()0	y608	28	0.000000111634	1.18123993697594E-7		
12	0/8	y"608	56	0.999999888366	1.0		
13	7/0	y708	8	0.000000001068	1.09584019636344E-9		
14	//8	<i>y</i> "708	28	0.999999998932	1.0		
15	0 /0	y808	1	0.00000000004	4.03199695853118E-12		
16	8/8	y"808	8	0.9999999999996	0.9999999999995968		

Табл. 23. Результаты решения примеров 8.1

<u>Пример 8.2. Расчет надежности невосстанавливаемой комбинаторной под-</u> системы К/4 с заданной средней наработкой до отказа элементов в предположении экспоненциального распределения

Справка. Рассматриваемый пример был исследован в совместной НИР трех организаций: ФГУП "СПбАЭП", ОАО "СПИК СЗМА" (Санкт-Петербург) и ИПУ РАН им. В.А.Трапезникова (Москва) [20].

Первый вариант решения примера 8.2

{Проекты. Тест_8. Пример_8_2. Пример_8_2_вариант_1}

Рассматривается комбинаторная подсистема (звено) 2/4 (два из четырех). Средние наработки до отказа всех элементов этой системы одинаковые и составляют $T_{oi} = 12500 \ vac$. (1.427 *год*). Требуется рассчитать вероятность безотказной работы комбинаторного звена $P_{2/4}(13140 \ vac)$, при условии нагруженного резервирования.

На следующих рисунках приведены результаты решения этой задачи тремя способами:

- на основе СФЦ комбинаторной подсистемы К/4 (см. Рис. 52);
- с помощью утилиты агрегирования (см. Рис. 53);
- с помощью утилиты формирования комбинаций (см. Рис. 54).

Рис. 52. Результаты решения первого варианта примера 8.2 с помощью СФЦ К/4

Рис. 53. Результаты решения первого варианта примера 8.2 с помощью расчетной утилиты агрегирования

🔗 Расчет К из N. Метод формирования комбинаций	
2 K/N 4 Ст N-восст Восст t 13140 Кол-во комбинаций К/N Точное Ркл Расчет Ркл Pacver Pkn no Risk Spectrum Выполнить Значимость: 410.443671325 • 410.490273314 • У Расчеты Вклад +: 410.288600177 • 410.271411278 • ИНВЕРСИЯ Вклад -: 41-0.155071148 • 41-0.218862036 • У Открыть окно Относительная ошибка 24.357603 % • •	N± Pi To (rog) TB (час) ▲ 3 0.34951807566€ 1.4269406 24 ▲ 4 0.34951807566€ 1.4269406 24 ▲ Pi 0.7 To 1.42694 To (rog) 1.54585235920853 ▲
1 2 1 3 1 4 2 3 2 4 3 4	A

Рис. 54. Результаты решения первого варианта примера 8.2 с помощью утилиты формирования комбинаций

Всеми тремя различными способами в ПК АСМ СЗМА получены одинаковые результаты расчетов:

$$P_{2/4}(13140 \ uac) = 0.43616353\ 0407$$
 - вероятность безотказной работы; (41)
 $T_{O-2/4} = 1.54585235\ 920853\ \Gamma.$ – средняя наработка до отказа. (42)

В научно-исследовательской работе [20] этот пример был решен тремя комплексами - ПК ACM C3MA, Relex и Risk Spectrum. Полученные с помощью ПК ACM C3MA результаты (41) и (42) полностью совпали с решениями на комплексе Relex (см. приложение 4, раздел 2.2, пример 2, табл.2.2.8 и сводная таблица результатов раздела 2.2).

Приведенные в НИР [20] (см. приложение 4, табл.1.2.8 и сводная таблица результатов раздела 2.2) результаты решения этого примера в СПбАЭП непосредственно на ПК Risk Spectrum составили:

вероятность отказа не менее 3 элементов из 4 (см. приложение 4, табл.2.2.8)
 равна

вероятность безотказной работы рассматриваемого звена 2/4 (см. приложение
 4, сводная таблица результатов раздела 2.2), равна

Последний результат (44) не совпадает ни с точным расчетом (41), полученным ПК АСМ СЗМА и ПК Relex, ни с результатом **0.542402510961863** приближенного расчета по методике (39), полученным в ПК АСМ СЗМА с помощью утилиты формирования комбинаций (см. Рис. 54).

Решение этого варианта примера ПК АСМ СЗМА по методике, использованной специалистами СПбАЭП в НИР [20], (вычисление вероятности отказа не менее 3 элементов из 4) дало следующие результаты

🔗 Расчет К из N. Метод формирования комбинаций	×
3 К/N 4 • Ст N-восст Восст t 13140 Кол-во комбинаций К/N Точное Ркл Расчет Ркл. по Вієк Spectrum 4 0.563836469593001 0.724078366319494 0.724078366319494 Выполниты 3начимость: 4) 0.443671325 • 4) 0.585628296 • У Расчеты Вклад.+: 4) 0.155071148 • 4) 0.136786222 • ИНВЕРСИЯ Вклад: 4) -0.288600177 • 4) -0.448842074 •	№ Pi To (rog) TB (час) 2 0.650481924333 1.4269406 24 3 0.650481924333 1.4269406 24 4 0.650481924333 1.4269406 24 Pi 0.6504819 To 3926941 Tb 24
Uтносительная ошибка Risk Specrum 28.419924 %	_
1 2 3 1 2 4 1 3 4 2 3 4	2

Рис. 55. Расчет вероятности отказа не менее 3 элементов из 4 (вероятность отказа элемента $p_i = 0.65048192\ 433335$)

Здесь точный расчет указанной вероятности составил **0.563836469593001**, а приближенный (по методике (39)) равен **0.724078366319494**, что совпадает с результатом (43), полученным непосредственно с помощью ПК Risk Spectrum. Однако, представляется, что использование дополнения (44) вероятности (43) в качестве даже приближенной оценки вероятности безотказной работы рассматриваемой комбинаторной подсистемы 2/4 не совсем корректно. Это показывает инверсное решение модели отказа не менее 3 элементов из 4.

🔗 Расчет К из N. Метод формирования комбинаций	
3 K/N 4 • CT C N-BOCCT C BOCCT t 13140	№ Pi To (год) Ts (час) ▲ 3 0.650481924333 1.4269406 24 ▲
Кол-во комбинаций К/N Точное Pkn Pacver Pkn по Risk Spectrum 6 0.436163530406999 0.542402510961862	4 0.65048192433 1.4269406 24
<u>Выполниты</u> 3начимость: 4) 0.443671325 4) 0.490273314	Pi 92433335 To 3926941 Tb 24
Расчеты Вклад +: 4) 0.288600177 ▲ 4) 0.271411278 ▲	
Г ИНВЕРСИЯ Вклад -: 4)-0.155071148 ▲ • 4)-0.218862036 ▲	
Открыть окно Относительная ошибка Risk Specrum 24.357603 %	
1" 2" 1 # 2"	_ <u> </u>
1 5 1" 4"	
2" 3" 2" 4"	
3" 4"	

Рис. 56. Расчет вероятности не отказа не менее 3 элементов из 4 (вероятность отказа элемента $p_i = 0.65048192\ 433335$)

Точный расчет здесь составил вероятность **0.436163530406999**, что совпадает с решением (41), полученным ПК АСМ СЗМА и Relex. Приближенный расчет (см. Рис. 56) по методике Risk Spectrum (39)) составил **0.542402510961862**, что совпадает с ранее полученным результатом (см. Рис. 54) на основе исходной модели 2/4.

Представляется целесообразным, уточнить вместе со специалистами СПБ АЭП, выполнявшими НИР [20], причины данного рассогласования результатов моделирования и расчетов на ПК АСМ СЗМА и ПК Risk Spectrum. Второй вариант решения примера 8.2

{Проекты. Тест_8. Пример_8_2. Пример_8_2_вариант_2}

Рассматривается та же комбинаторная подсистема (звено) 2/4 (два из четырех). Однако, значение средней наработки до отказа всех элементов увеличено до $T_{\alpha i} = 1\,250\,000$ час. (142.6941 год).

Требуется рассчитать вероятность отказа $Q_{2/4}(13140 \ vac)$ этого комбинаторного звена на интервале времени t = 13140 час.

На следующих рисунках приведены результаты решения этой задачи тремя способами:

- на основе СФЦ подсистемы К/4 и критерия у"204 (см. Рис. 57);
- с помощью расчетной утилиты агрегирования (см. Рис. 58);
- с помощью утилиты формирования комбинаций (см. Рис. 59).

Рис. 57. Результаты решения второго варианта примера 8.2 с помощью СФЦ К/4

2 Кол- 6 Ср.на Тоі	К/N 4 во комбинаций ровно К/N раб. до отказа эл. (год) 142.694063926 t	Вычисл Нарабрт 13140	Статические расчеты слить • Вер.врем. расчеты • Учесть восстановление пка (час) • ИНВЕРСИЯ
pi	Вероятность элемента 0.989543057979956	PKNr	Вероятность ровно К/N
QKN	Вероятность не менее К/N 4.53789685913051E-6		Вер.ровно К/N при одном р=1 0.000324612583549757
ZNi	"Значимость" не менее K/N -0.000324612583549757		Вер.ровно К/N при одном р=0 0.0307181705673502
Bpi	"Вклад+" не менее К/N -3.39445496515646E-6		"Значимость" ровно К/N -0.0303935579838005
Bmi	"Вклад" не менее К/N 0.0003212181285846		"Вклад" ровно К/N 0.030075734310181
	Ср.нараб. до/на отказ ТоКN		"Вклад+" ровно К/N

Рис. 58. Результаты решения второго варианта примера 8.2 с помощью расчетной утилиты агрегирования

Рис. 59. Результаты решения второго варианта примера 8.2 с помощью утилиты формирования комбинаций

Всеми тремя различными способами в ПК АСМ СЗМА получены одинаковые результаты расчетов:

$$Q_{2/4}(13140 \ yac) = 0.00000453 \ 7897 \ -$$
 вероятность отказа; (45)

 $T_{Q-2/4} = 154.5852$ г. = 1354166.67 ч. – средняя наработка до отказа. (46)

Вероятность отказа (45), полученная ПК АСМ СЗМА, совпала с результатом решения этой задачи с непосредственно помощью ПК Risk Spectrum (см. приложение 4, сводная таблица результатов раздела 2.2, пример 2). Средняя наработка до отказа в ПК Risk Spectrum не вычисляется.

Вероятность отказа (45) и средняя наработка (46), вычисленные ПК АСМ СЗМА, точно совпали с результатами решения этой задачи комплексом Relex (см. приложение 4, сводная таблица результатов раздела 2.2, пример 2).

<u>Пример 8.3. Расчеты вероятностных характеристик высокоразмерных ком-</u> <u>бинаторных подсистем</u>

Справка. Рассматриваются примеры, которые были исследованы в совместной НИР трех организаций: ФГУП "СПбАЭП", ОАО "СПИК СЗМА" (Санкт-Петербург) и ИПУ РАН им. В.А.Трапезникова (Москва) [20].

Как было отмечено, в базовой версии ПК АСМ СЗМА непосредственно с помощью СФЦ обычно учитываются малоразмерные комбинаторные взаимосвязи (до N = 8 включительно, см. Рис. 49). При наличии в структурах исследуемых объектов высокоразмерных односвязных комбинаторных подсистем их вероятностные характеристики могут учитываться в моделях надежности и безопасности следующим способом:

- односвязная комбинаторная подсистема представляется в СФЦ объекта отдельной функциональной вершиной (головной или двухполюсником);
- с помощью программных утилит агрегирования или формирования комбинаций выполняется расчет необходимых вероятностных характеристик данной комбинаторной подсистемы, после чего они вводятся в ПК АСМ СЗМА в качестве параметров соответствующей функциональной вершины в общей СФЦ исследуемого объекта;
- после этого выполняется автоматизированное моделирование и расчет вероятностных характеристик исследуемого объекта с помощью ПК АСМ СЗМА.

Программная утилита агрегирования обеспечивает расчет прямых и обратных вероятностных характеристик однородных (все элементы одинаковые) комбинаторных подсистем размерностью до N = 30. Вычисляются статические вероятностные характеристики и показатели надежности восстанавливаемых и невосстанавливаемых комбинаторных подсистем. Дополнительно (в исследовательских целях) в данной утилите реализованы методики расчета вероятностных показателей, используемые в ПК Risk Spectrum (минимальной верхней границы сечения (39), а также первого, второго и третьего уровней аппроксимации) [24].

Программная утилита формирования комбинаций обеспечивает автоматическое построение всех прямых и инверсных комбинаций K/N и соответствующих многочленов вероятностных функций. На основе этих многочленов выполняется расчет прямых и обратных вероятностных характеристик как однородных (все элементы одинаковые), так и неоднородных (различные параметры элементов) комбинаторных подсистем размерностью до N = 20. При больших значениях числа N может существенно увеличиваться время моделирования и расчетов. Утилита вычисляет статические вероятностные характеристики и показатели надежности восстанавливаемых и невосстанавливаемых комбинаторных подсистем. В данной утилите реализована вспомогательная процедура расчета приближенного значения (39) вероятностных характеристик комбинаторной подсистемы (минимальной верхней границы сечения), используемая в ПК Risk Spectrum [24].

В качестве первой задачи данного Примера 8.2 рассматривается комбинаторная подсистема 3/4 с одинаковыми собственными вероятностями элементов p = 0.9. Требуется рассчитать вероятность $P_{3/4}$ этой комбинаторной подсистемы. На Рис. 60 приведены результаты решения данной задачи с помощью комбинаторной утилиты агрегирования ПК АСМ СЗМА:

$$P_{3/4 \text{ точная ПК АСМ СЗМА}} = 0.9477;$$

 $P_{3/4 \text{ Risk Spectrum минимальная верхняя граница сечения}} = 0.994606419519;$
 $P_{3/4 \text{ Risk Spectrum аппроксимация первого порядка}} = 2.916;$ (47)
 $P_{3/4 \text{ Risk Spectrum аппроксимация явторого порядка}} = -1.0206$
 $P_{3/4 \text{ Risk Spectrum аппроксимация третьего порядка}} = 1.6038$

Расчет К из N. Метод агрегирования
3 К/N 4 Кол-во комбинаций ровно К/N Вычислить О Вер.врем. расчеты 4
П ИНВЕРСИЯ
Вероятность элемента Вероятность ровно К/N
pi 0.9 PKNr 0.2916
Вероятность не менее К/N Вер.ровно К/N при одном р=1
PKN 0.9477 0.243
"Значимость" не менее К/N Вер.ровно К/N при одном р=0
"By gage" we were a K/N "243"
Bpi 0.0243
"Вклад" не менее К/N "Вклад" ровно К/N
Bmi -0.2187 0.4374
"Вклад+" ровно К/N
-0.0486
Расчеты по формулам Risk Spectrum
Pacver PKN no Risk Spectrum 0.994606419519 ZNi 0.269141211
Отн. погрешн. Risk Spectrum 4.9495 % Врі 0.003534791481
Аппроксимация 1 порядка 2.916 Вті -0.265606419519
Аппроксимация 2 порядка -1.0206
Аппроксимация 3 порядка 1.6038

Рис. 60. Результаты решения контрольного примера с помощью утилиты агрегирования

Все результаты (47) решения данной задачи ПК АСМ СЗМА, совпадают с данными, приведенный в технической документации на ПК Risk Spectrum [24].

В Табл. 24 приведены результаты моделирования и расчетов с помощью комплексов ПК ACM C3MA, Relex и Risk Spectrum девяти задач анализа высокоразмерных комбинаторных подсистем.

			Результаты моделирования						
№ вар.	Система К / N	тема Вероят- ности / N элемен- тов	и расчетов						
				ПК АСМ СЗМА	D	P _{K/N}			
			Число комби- наций	Р_{К/N} Утилита агрегирования	Р _{К/N} Утилита формирования комбинаций	Г _{К/N} Relex RBD (ИПУ РАН)	Risk Spectrum (СПбАЭП)		
1	2	3	4	5	6	7	8		
1	9/15		5005	0.868857	0.8688574	0.868857	В ПК Risk		
2	15/22		170544	0.671251	0.671251	0.671251	Spectrum долж-		
3	21/38	<i>pi</i> = 0.7	28781143380	0.982005	не решается	0.982005	ны вычисляться, но результаты в НИР [20] не приведены		
4		<i>pi</i> = 0.3		0.131143	0.1311423	0.131143	0.7552		
5		pi = 0.1		3.106305E-4	0.0003106305	3.10631e-4	6.433E-4		
6	7/15	<i>pi</i> = 0.01	6425	5.998315E-11	5.998315E-11	5.99831e-11	6.435E-11		
7		pi = 0.001	0455	6.390095E-18	6.390095E-18	6.39009e-18	6.435E-18		
8		pi = 0.0001		6.430497E-25	6.430497E-25	6.43050e-25	6.435E-25		
9		<i>pi</i> = 0.00001		6.43455E-32	6.43455E-32	6.43455e-32	6.435E-32		

Табл. 24. Результаты решения комбинаторных задач Примера 8.3

Все задачи Примера 8.3, приведенные в Табл. 24, были решены в НИР [20] (см. приложение 4, сводная таблица раздела 2.2, примера 1) с помощью еще двух программных комплексов - Relex RBD (ИПУ РАН) и Risk Spectrum (СПбАЭП). Сопоставление этих результатов позволяет сделать следующие заключения.

- Все расчеты вероятностей P_{K/N}, полученные с помощью утилит ПК АСМ СЗМА, полностью совпадают с результатами решений соответствующих задач с помощью ПК Relex RBD.
- 2. Расхождения точных расчетов этого показателя с приближенными результатами, полученными с помощью ПК Risk Spectrum, сокращаются по мере уменьшения значений вероятностей элементарных (базисных) событий *p_i* < 0.01, и практически совпадают при значениях *p_i* = 0.00001 (вариант 9). При этом следует отметить, что вычисляемые с помощью утилит ПК АСМ СЗМА приближенные значения *P_{K/N}* (по методике (39)) точно совпадают с данными, приведенными в табл.22, столбец 8, только для вариантов 4, 5 и 6. Для остальных вариантов 7, 8, и 9 приближенный расчет с помощью утилит ПК АСМ СЗМА дал значение ровно 0.0, что не совпадает с данными этих расчетов, полученными в СПбАЭП, непосредственно с помощью ПК Risk

Spectrum (приведены в НИР [20], см. приложение 4, сводная таблица раздела 2.2, примера 1).

3. Контрольные расчеты противоположных (инверсных) вариантов указанных задач, с помощью комбинаторных утилит ПК АСМ СЗМА, подтверждают непротиворечивость результатов вариантов 1, 2, 4-9 (сумма вероятностей противоположных моделей равна 1.0). Однако, этот контроль варианта 3 дал суммарную вероятность 1.0000000000000005. Вероятнее всего, это связано не с ошибками в алгоритме и программе утилиты агрегирования, а с накоплением ошибок округления в ЭВМ при решении комбинаторных задач, размерность которых превышает заявленные ограничения ПК АСМ СЗМА (*N* ≤ 30).

Выводы по результатам Теста №8

Рассмотренные в Тесте №8 примеры иллюстрируют и подтверждают следующие функциональные возможности ПК АСМ СЗМА.

- ПК АСМ СЗМА позволяет корректно моделировать и вычислять все, заявленные в ПК АСМ СЗМА, различные вероятностные показатели надежности для комбинаторных подсистем К/N, представляемых с помощью СФЦ /см. Пример 8.1 и Пример 8.2/;
- С помощью двух программных утилит (агрегирования и перебора комбинаций) ПК АСМ СЗМА обеспечивается возможность предварительного расчета вероятностных характеристик высокоразмерных однородных (N<=30) и неоднородных (N<=20) односвязных комбинаторных подсистем /Пример 8.3/;
- При структурном представлении комбинаторной подсистемы с помощью СФЦ, и при использовании утилиты формирования комбинаций ПК АСМ СЗМА, обеспечивается возможность получения соответствующих прямых и инверсных логических моделей К/N (явного представления всех комбинаций) /примеры 8.1 и 8.2/;

- Все три способа комбинаторного анализа, реализованные в ПК АСМ СЗМА, позволяют строить как прямые, так и обратные модели и вычислять статические и вероятностно-временные показатели надежности невосстанавливаемых и восстанавливаемых комбинаторных подсистем /все примеры Теста №8/;
- Правильность решения комбинаторных задач подтверждена совпадением результатов, полученных ПК АСМ СЗМА, с решениями, тех же задач с помощью аттестованного программных комплексов Risk Spectrum и широко используемого комплекса Relex.

Расчетный и аналитический тест №9. ДВУХУРОВНЕВАЯ ДЕКОМПОЗИЦИЯ СФЦ И АППАРАТ КРАТНОСТИ ВЕРШИН В АНАЛИЗЕ ВЫСОКОРАЗМЕРНЫХ СИСТЕМ

Справка. Рассматривается пример из реального проекта АСУТП [43], решение которого было исследовано и прошло апробацию в ходе разработки и защиты кандидатской диссертации [42].

На Рис. 61 изображена полная (недекомпозированная) СФЦ исследуемой автоматизированной системы управления (АСУ), реализующей функцию F-15 противоаварийной защиты [43, 42].

Рис. 61. Полная (недекомпозированная) СФЦ АСУ

Данная СФЦ представляет 55 элементов исследуемой системы. Параметры надежности элементов (средние наработки до отказа) приведены в Табл. 25.

№ эл.	Т _{оі (год)}	№ эл	Т _{оі (год)}	№ эл.	Т _{оі (год)}
1	33.60	22	150.00	41	148.00
2	33.60	23	150.00	42	148.00
5	20.60	24	150.00	43	3805.00
6	20.60	25	71.50	44	3805.00
7	20.60	26	71.50	54	1000.00
8	20.60	27	14.70	55	1000.00
9	148.00	28	14.70	65	148.00
10	148.00	29	14.70	66	148.00
11	71.50	30	14.70	67	3805.00
12	71.50	31	47.60	68	3805.00
13	150.00	32	47.60	69	3805.00
14	150.00	33	47.60	70	19.60
15	150.00	34	47.60	71	5.70
16	150.00	35	148.00	72	20.00
17	71.50	36	148.00	73	30.60
18	71.50	37	148.00	74	20.00
19	71.50	38	148.00	75	85.40
20	71.50	39	30.60		
21	150.00	40	16.50		

Табл. 25. Параметры надежности элементов АСУ

Требуется рассчитать вероятность $P_{ACV}(t)$ безотказной работы ACУ за время t = 8760 часов и среднюю наработку до отказа T_{OACV} .

<u>Пример 9.1. Моделирование и расчет надежности</u> на основе недекомпозированной СФЦ

{Проекты.Tecm_9.Пример_9_1}

Для решения этого примера СФЦ, изображенная на Рис. 61, и параметры элементов, указанные в табл.23, вводятся в ПК АСМ СЗМА и устанавливается ЛКФ *у*123. Результаты автоматизированного моделирования и расчета показателей ее надежности, выполненные с помощью ПК АСМ СЗМА (без декомпозиции СФЦ), приведены на Рис. 62.

Рис. 62. Результаты моделирования и расчетов надежности АСУ на основе недекомпозированной СФЦ

Как видно из данных, приведенных на Рис. 62, размеры автоматически сформированных ПК АСМ СЗМА математических моделей достаточно велики:

- логическая функция 4992 конъюнкции (КПУФ);
- вероятностная функция **52160** одночленов;

- общее время моделирования и расчетов на ПК АСМ СЗМА составило 16 минут (ПЭВМ Pentium-4, 2.0 ГГц);
- показатели надежности АСУ, вычисленные ПК АСМ СЗМА:

$$P_{ACY}(8760) = 0.899973466889; \tag{48}$$

$$T_{o ACV} = 5.344$$
 года. (49)

<u>Пример 9.2. Моделирование и расчет надежности АСУ на основе частично</u> декомпозированной СФЦ

{Проекты. Тест_9. Пример_9_2}

На Рис. 63 приведена составная СФЦ той же АСУ, в которой декомпозированы только 8 конъюнктивных подгрупп элементов.

Рис. 63. СФЦ АСУ, декомпозированная по конъюнктивным односвязным подсистемам

В этой составной СФЦ выделено восемь фрагментов, работоспособность которых определяется безотказностью всех входящих в каждую подгруппу эле-

ментов. Такая декомпозиция является неполной и не позволяет сократить общее число конъюнкций логической модели системы, но понижает их ранг и, следовательно, уменьшает размерность многочлена ВФ.

На Рис. 64 приведено решение рассматриваемой задачи, полученное ПК АСМ СЗМА на основе частично декомпозированной СФЦ.

Рис. 64. Результаты моделирования и расчетов надежности АСУ на основе СФЦ, декомпозированной по конъюнктивными подсистемами

Как видно из результатов, приведенных на Рис. 64, размеры полученных ПК АСМ СЗМА математических моделей несколько сократились:

- логическая функция 4992 конъюнкции (не изменилась);
- вероятностная функция 13440 одночленов (вместо 52 160);
- общее время моделирования и расчетов на ПК АСМ СЗМА составило 4 минуты 45 сек. (ПЭВМ Pentium-4, 2.2 ГГц) вместо 16 минут предыдущего Примера 9.1;
- показатели надежности АСУ, вычисленные ПК АСМ СЗМА:

 $P_{ACV}(8760) = 0.899973466889$ - полностью совпало предыдущим решением (48);

 $T_{O-ACV} = 5.344$ г. - полностью совпало предыдущим решением (49).

При частичной конъюнктивной декомпозиции размерность логической модели остается прежней, а размерность и время построения ВФ сокращаются, за счет более эффективной квазиортогонализации логической ФРС комбинированным методом [5]. В данном примере размерность ВФ сократилась почти в 4 раза, а общее время моделирования и расчетов уменьшилось в 3 раза. При этом полностью сохранилась точность вычислений всех показателей надежности (48), (49) исследуемой системы.

<u>Пример 9.3. Моделирование и расчет надежности АСУ на основе полностью</u> декомпозированной СФЦ

{Проекты.Тест_9.Пример_9_3}

На Рис. 65 приведена составная СФЦ той же АСУ, в которой декомпозирована большая часть ее односвязных конъюнктивных и дизъюнктивных подсистем.

Рис. 65. СФЦ АСУ декомпозированная по конъюнктивным и дизъюнктивным односвязным подсистемам

В этой составной СФЦ выделено семнадцать односвязных структурных фрагментов с конъюнктивной и дизъюнктивной логикой функционирования элементов, входящих в каждую подгруппу. Такая декомпозиция для данного примера является почти полной. На Рис. 66 приведены результаты автоматизированного моделирования и расчетов, полученные с помощью ПК АСМ СЗМА, на основе полностью декомпозированной СФЦ (см. Рис. 65).

Рис. 66. Результаты моделирования и расчетов на основе полностью декомпозированной СФЦ

Как видно из Рис. 66, результаты, полученные на основе полностью декомпозированной СФЦ, составляют:

- наибольшая логическая функция содержит 8 конъюнкций (вместо 4992 в предыдущих примерах);
- наибольшая вероятностная функция составила 15 одночленов (вместо 52160 и 13440 в предыдущих примерах);

- общее время моделирования и расчетов на ПК АСМ СЗМА (ПЭВМ Pentium-4, 2.2 ГГц) составило 1 сек. (вместо 16 и 4.45 минут в предыдущих примерах);
- показатели надежности АСУ, вычисленные ПК АСМ СЗМА:

 $P_{ACV}(8760) = 0.89997346\ 6889$ - полное совпадение с точным расчетом (48));

 $T_{o ACV} = 4.965$ г. - вычислено приближенное значение, несколько заниженное относительно точного значения (49).

Данный пример показывает, что при полной декомпозиции СФЦ в ПК АСМ СЗМА обеспечивается сохранение точности вычислений вероятностных показателей, а также значимостей и вкладов элементов. С некоторой погрешностью (обычно в сторону уменьшения) вычисляется средняя наработка до отказа, что часто допустимо в инженерных расчетах.

Рассмотренные в Тесте №9 примеры 9.1, 9.2 и 9.3 подтверждают эффективность реализации в программном комплексе ПК АСМ СЗМА методов односвязной структурной декомпозиции при автоматизированном анализе надежности и безопасности технических систем большой размерности и высокой структурной сложности.

В дополнение к сказанному отметим, что для преодоления проблемы размерности можно, наряду с односвязной декомпозицией, применять реализованный в ПК АСМ СЗМА аппарат кратности множественных конъюнктивных и дизъюнктивных групп элементов с одинаковыми собственными параметрами надежности.

<u>Пример 9.4. Моделирование и расчет надежности АСУ с использованием ап-</u> парата кратности вершин

В примере

{Проекты. Тест_9. Пример_9_4_кратность}

демонстрируется возможность быстрого решения рассматриваемой задачи с использованием только аппарата кратности.

Рис. 67. Результаты моделирования и расчетов с использованием аппарата кратности вершин СФЦ

Получены следующие результаты решения Примера 9.4:

- логическая функция содержит 8 конъюнкций;
- вероятностная функция составила 15 одночленов;
- общее время моделирования и расчетов на ПК АСМ СЗМА (ПЭВМ Pentium-4, 2.2 ГГц) составило 1 сек.;
- показатели надежности АСУ, вычисленные ПК АСМ СЗМА:

 $P_{ACV}(8760) = 0.89997346$ 6889 - полное совпадение с (48);

 $T_{o ACV} = 4.831$ г. - вычислено приближенное значение, несколько зани-

женное относительно (49).

137

<u>Пример 9.5. Моделирование и расчет надежности АСУ с совместным исполь-</u> зованием декомпозиции и аппарата кратности вершин

В примере

{Проекты. Тест_9. Пример_9_5_декомпозиция_кратность}

демонстрируется возможность быстрого решения рассматриваемой задачи с совместным использованием при построении СФЦ односвязной структурной декомпозиции и аппарата кратности вершин.

Рис. 68. Результаты моделирования и расчетов с совместным использованием декомпозиции аппарата кратности вершин СФЦ

Все результаты решения Примера 9.5 полностью совпали с предыдущим вариантом моделирования и расчетов.

Данный пример не удалось решить с помощью известных аттестованных ПС. Поэтому корректность моделирования и вычислений вероятностновременных показателей надежности АСУ, как невосстанавливаемой системы, можно подтвердить только косвенно, ссылкой на Тесты 1, 2 и 8, в которых правильность решения задач данного класса неоднократно была обоснована аналитическими решениями, результатами из литературных источников и данными, полученными с помощью ПК Relex и аттестованного ПК Risk Spectrum.

Дополнительно, с помощью ПК АСМ СЗМА выполнен контроль на непротиворечивость (согласованность) результатов моделирования и вычисления вероятности безотказной работы АСУ. В задачах

{Проекты. Тест_9. Контроль. Пример_9_3_отказ} {Проекты. Тест_9. Контроль. Пример_9_4_кратность_отказ} {Проекты. Тест 9. Контроль. Пример 9 5 декомпозиция кратность отказ}

три ранее рассмотренных примера решены на основе противоположного критерия y123 = y''123. С помощью полученных трех моделей отказа восстанавливаемой АСУ вычислены одинаковые значения вероятности

$$Q_{ACV}(8760) = 0.10002653\ 3111\ . \tag{50}$$

Вероятность отказа АСУ (50) является точным дополнением до 1.0 ранее полученной, во всех задачах Теста №9, вероятности безотказной работы (49), что является прямым подтверждением согласованности (непротиворечивости) моделирования и расчетов надежности систем данного класса.

Выводы по результатам Теста №9

Рассмотренные в Тесте №9 примеры иллюстрируют и подтверждают реализацию в ПК АСМ СЗМА следующих функций и возможностей:

- С увеличением числа элементов и сложности структуры системы, представляемой СФЦ, могут существенно (экспоненциально) возрастать размеры автоматически формируемых математических моделей и затраты времени на работу ПК АСМ СЗМА /пример 9.1/;
- Эффективным способом преодоления указанной проблемы размерности является метод односвязной структурной декомпозиции [5, 42], реализованный в ПК АСМ СЗМА на двух уровнях эквивалентирования односвязных подсистем.
- При частичной декомпозиции только конъюнктивных подсистем сокращается размерность, увеличивается скорость вероятностного моделирования и сохраняется точность вычислений всех, в том числе вероятностновременных, показателей надежности объекта в целом /пример 9.2/;
- При полной декомпозиции конъюнктивных и дизъюнктивных односвязных подсистем происходит существенное сокращение размерности и времени моделирования и расчетов (в Примере 9.3 примерно в 600 раз по размерности логической модели, почти в 3,5 тысячи раз по размерности ВФ и в 960 раз по времени). При этом полностью сохраняется точность вычислений вероятностных показателей, а средняя наработка до отказа вычисляется с приближением (в сторону уменьшения, что часто считается допустимым при инженерных расчетах) /пример 9.3/.
- В ПК АСМ СЗМА для решения проблемы размерности можно, наряду с декомпозицией, применять аппарат кратности /Примеры 9_4 и 9_5/.

Расчетный и аналитический тест №10. ОГРАНИЧЕНИЯ РАЗМЕРНОСТИ МОДЕЛЕЙ

Настоящий тест №10 разработан в ходе аттестации ПК АСМ СЗМА как дополнение к Тесту №9, при ответе на вопрос эксперта Бахметьева А.М. и его коллег: Каковы ограничения на размерность анализируемых систем?

Большинство примеров данного Теста_10 являются абстрактными и вырожденными структурами. Они не представляют реальных системных объектов, а в утрированной форме отображают тот вид логических связей в СФЦ, при моделировании которых наиболее ярко проявляются различные аспекты ограничений размерности ПК АСМ СЗМА. Примеры предназначены как для иллюстрации видов ограничений размерности моделей, которые могут проявляться в процессе анализа надежности и безопасности систем, так и для демонстрации возможностей ПК АСМ СЗМА преодолевать проблему большой размерности и высокой структурной сложности исследуемых систем.

Примеры 10.1. Ограничения размерности структурной постановки задач

Ограничения размерности графического описания систем в ПК АСМ СЗМА проиллюстрируем с помощью вырожденной "ИЛИ-структуры", СФЦ которой приведено на рис.69.

Рис. 69. СФЦ дерева отказов 500 базовых событий объединенных операторами "ИЛИ"

Эта СФЦ представляет дерево отказов, содержащее 500 базовых событий (функциональных вершин с номерами 1, 2, ..., 500). Все элементарные базовые события данного дерева отказов объединены логическими связями "ИЛИ".

СФЦ, изображенная на рис.69 включает в себя 50 групп по 10 элементов, которые составляют 5 подсистем (столбцов рисунка) по 10 групп (100 элементов) в каждой.

Граф СФЦ на рис.69 содержит 500 функциональных и 15 фиктивных вершин, что несколько превышает заявленное допустимое значение числа 400 вершин основной СФЦ (см. ОВ, §1.3). Однако она помещается в окне ввода суперграфа основной СФЦ ПК АСМ СЗМА, так как в ней практически отсутствуют пояснительные тексты.

Для решения данного примера Теста 10 в ПК АСМ СЗМА вводятся СФЦ дерева отказов, изображенная на рис.69, и одинаковые статические вероятностные всех параметры (вероятности отказов или неготовности) элементов $p_i = 0.0033, i = 1, 2, ..., 500$. Устанавливается режим "Статический расчет", отключаются признаки "Вывод явной ФРС", "Вывод явной ВФ", " Признак полных вычислений" (значимостей, вкладов, построение графиков и вероятностновременных характеристик). Это позволяет боле наглядно оценить ограничения размерности ПК АСМ СЗМА, которые связанны с процедурами построения непосредственно логических и вероятностных моделей, т.е. с работой библиотеки ЛОГ&ВФ. Влияние на размерность процедур расчета показателей будут рассмотрены в следующих примерах данного Теста 10.

После ввода исходных данных, с помощью ПК АСМ СЗМА выполняются пять решений для логических критериев отказа (верхних событий ДО) подсистем из 100, 200, 300, 400 элементов, и рассматриваемой системы в 500 элементов в целом:

142

Еще пять решений выполняются для противоположных критериев, которые являются инверсиями (51) и в данном случае представляют условия безотказности или готовности указанных подсистем и системы в целом:

$$y''554, y''555, y''556, y''557, y''558.$$
 (52)

{Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_100_у554} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_100_не_у554} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_200_у555} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_200_не_у555} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_300_у556} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_300_не_у556} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_300_не_у556} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_400_у557} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_400_не_у557} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_400_не_у557} {Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_500_у558}

На Рис.70. изображен вид основного окна ввода СФЦ интерфейса пользователя ПК АСМ СЗМА, после решения первой из указанных задач Примеров_10_1.

Рис. 70. Результаты решения Примера 10_1_ИЛИ_100_у554

Характеристики времени выполнения ПК АСМ СЗМА этапов моделирования и расчетов, размеры формируемых логических и вероятностных функций и вычисленные значения вероятностей отказов и безотказной работы всех задач (51) и (52), приведены в табл.Д1.24.

T		20
	аопина	2 h
	иолици	20

		Время решения (мин' сек'')					Вероятность	
N⁰	ЛКФ Число эл-в	ФРС	ВФ	Расчеты	Размер ФРС	Размер ВФ	безотказн. /отказа системы: режим <u>"Статический расчет"</u> режим "Приближенный расчет" методика Risk Spectrum	
1	y554 100	00' 02"			100	100	0.281468476852	
2	y"554 100	<00' 01"			1	1	0.718531523148 0.718531523148	
3	y555 200	00' 02" 00' 02"			200	200	0.483712450243 0.483712450243	
4	y"555 200	<00' 01"			1	1	0.516287549757	
5	y556 300	00' 02"	00' 05"	00' 01"	300	300	0.629031120491	
6	y"556 300	00' 02"			1	1	0.029031120491 0.370968879509 0.370968879509	
7	y557 400	00' 03"	00' 14"	00' 01"	400	400	0.733447165966 0.733447165966	
8	y"557 400	00' 01"			1	1	0.266552834034 0.266552834034	
9	y558	00' 04"	00' 20"	00' 01"	500	500	0.808473386162	
10	500 y"558		00' 01"		1	1	0.808473386162 0.191526613838	
10	500	500						0.191526613838

Здесь временные характеристики решения задач соответствуют компьютеру, с быстродействием 2.2ГГц.

В табл.26 машинное время выполнения этапов моделирования и расчетов указано в минутах (') и секундах ("). Размеры ФРС оцениваются числом конъюнкций автоматически формируемой минимальной дизъюнктивной нормальной формы логической функции. Показателем размерности моделей является количество МСО для прямых решений и количество КПУФ для обратных решений рассматриваемой задачи. Размеры вероятностных моделей характеризуются числом одночленов в автоматически формируемых ПК АСМ СЗМА многочленах расчетных вероятностных функций (ВФ).
В последнем столбце таблицы для каждой задачи приведены два расчетных значения статической вероятности отказа или безотказной работы системы. Первым (сверху) записано значение, вычисляемое ПК АСМ СЗМА в режиме "Статический расчет" на основе формируемого многочлена ВФ. Вторым (снизу) приведено значение вероятности реализации критерия (вершинного события, прямого или инверсного), вычисленное ПК АСМ СЗМА в режиме "Приближенный расчет". Это значение, полагаем, должно совпадать с решением задач с помощью ПК Risk Spectrum [24] (см. (39), "минимальная верхняя граница сечения").

СФЦ систем, содержащих более чем 500 элементов, могут не поместиться в основное рабочее окно интерфейса пользователя ПК АСМ СЗМА. Анализ таких систем с помощью ПК АСМ СЗМА возможен в тех случаях, когда допустимой является односвязная структурная декомпозиция высокоразмерных объектов на автономно моделируемые части (односвязные подсистемы) и/или допустимо использование аппарата кратных вершин и комбинаторных утилит. Так, например, на рис.71, изображена декомпозированная СФЦ, которая полностью представляет исходную недекомпозированную СФЦ рассматриваемой системы, изображенную на рис.70.

Рис. 71. СФЦ декомпозированной системы из 500 элементов

В качестве односвязных (т.е. декомпозируемых) частей здесь выступают отдельные подсистемы (столбцы исходной СФЦ) по 100 элементов в каждой. То есть каждая эквивалентированная вершина 1, 2, 3, 4 и 5 декомпозированной СФЦ содержит подграф исходного дерева отказов, состоящий из 100 базовых событий (см. правую часть рис.71.).

Общее решение рассматриваемого примера с помощью ПК АСМ СЗМА на основе декомпозированной СФЦ дает следующие результаты

{Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_дек_100_на_5_у558}

{Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_дек_100_на_5_не_у558}

Таблица 27

		Время	н решения (ми	н' сек'')			Вероятность
N⁰	ЛКФ Число Эл-в	ФРС	ВФ	Расчеты	Размер ФРС	Размер ВФ	безотказн. /отказа системы: режим <u>"Статический расчет"</u> режим "Приближенный расчет" методика Risk Spectrum
1	y558	00' 01"			5×100	5×100	0.808473386162
	100×5				0	0	0.808473386162
2							0.191526613838
	100×5	00' 01"			1	1	0.191526613838

Выполненные на основе декомпозированной СФЦ расчеты вероятностных характеристик рассматриваемой системы совпали с предыдущими решениями этой задачи (см. табл.26 варианты 9, 10), полученными ПК АСМ СЗМА на основе недекомпозированной, полноформатной СФЦ дерева отказов, изображенной на рис.69. При этом время моделирования и размеры логических и вероятностных моделей существенно сократились.

На рис.72 изображено главное окно интерфейса пользователя ПК ACM СЗМА после решения первого из следующих двух Примеров_10_1:

{Проекты . Тест_10 . Примеры_10_1 . Пример_10_1_ИЛИ_дек_100_на_20_у558};

{Проекты. Тест_10. Примеры_10_1. Пример_10_1_ИЛИ_дек_100_на_20_не_у558}.

Рис. 72. Графическое представление высокоразмерного декомпозированного дерева отказов

В данном примере предыдущая ИЛИ-структура (см. рис.71) увеличена в 4 раза, т.е. представляет дерево отказов, содержащее 2000 базовых событий. Для декомпозиции потребовалось 20 эквивалентированных вершин основного графа декомпозированной СФЦ. Но это не предел структурной размерности, поскольку на основном рабочем поле ПК АСМ СЗМА может быть размещено до 400 вершин (см. OB, §1.3, табл.1).

Результаты решения прямого (отказ) и обратного (безотказность) вариантов данного примера приведены в табл.28.

Таблица 28

		Время	решения (ми	н' сек'')			Вероятность
Nº	ЛКФ Число Эл-в	ФРС	ВΦ	Расчеты	Размер ФРС	Размер ВФ	безотказн. /отказа системы: режим <u>"Статический расчет"</u> режим "Приближенный расчет" методика Risk Spectrum
1	y558	001.021		•	20.100	20.100	0.998654398316
1	100×20	00' 03''			20×100	20×100	0.998654398316
2	y"558	00' 02"		1	1	0.001345601684	
4	100×20	00 05			1	1	0.001345601684

147

Все рассмотренные задачи Примера 10.1 построены так, что их можно (как мы полагаем) повторить с помощью ПК Risk Spectrum. Для этого достаточно Режим "Статические расчеты" ПК АСМ СЗМА, заменить на режим "Приближенные расчеты" и нажать клавишу "Моделирование и расчет". После этого ПК АСМ СЗМА построит только логическую ФРС (без построения многочлена ВФ) и выполнит приближенный расчет вероятности реализации критерия, по методике, реализованной в ПК Risk Spectrum ("минимальной верхней границей сечения"), CRISS 4.0 (без учета типов отказов), Saphitre-7 и др. (см. формулу (39)). Результаты вычисления ПК АСМ СЗМА вероятностей в режиме "Приближенный расчет" должны, мы полагаем, полностью совпасть с решениями ПК Risk Spectrum.

Анализ результатов решения задач Примера_10.1 позволяет сделать следующие заключения:

- При формировании прямых решений (в рассмотренных примерах это отказы, неготовность, авария) на основе СФЦ вырожденных ИЛИ-деревьев отказов с увеличением числа элементов происходит линейное нарастание размеров формируемых ПК АСМ СЗМА математических моделей и времени решения задач;
- Все обратные решения (в данном случае это безотказность, готовность, безопасность) имеют размерность 1 конъюнкция (эффект вырожденных ИЛИ моделей) и формируются в ПК АСМ СЗМА очень быстро. Это говорит о том, что логическая полнота ПК АСМ СЗМА позволяет пользователю при анализе реальных систем выбрать тот подход к моделированию (прямой или обратный) который имеет меньшую размерность. Точность вычислений вероятностных показателей, и в том и в другом случаях, сохраняется полностью;
- Результаты логического моделирования и расчетов статических вероятностей рассмотренных задач могут быть проверены с помощью ПК Risk Spectrum, поскольку для данного класса структур его приближенные расчеты является точными.

Примеры 10.2. Ограничения размерности логического моделирования

На рис.73 приведена СФЦ гипотетического дерева отказов (вырожденной "ИЛИ_И-системы") содержащего 50 базовых событий (вершины с номерами 1, 2, ..., 50).

Рассматриваемая СФЦ содержит 10 групп по 5 элементов. Элементы в группах объединены по логике "ИЛИ". Между собой группы объединяются в подсистемы конъюнктивными связями "И", по возрастанию числа элементов слева направо от *у*61 (5 элементов одной группы) до *у*70 (50 элементов в 10 группах).

Для решения задач данного примера в ПК АСМ СЗМА вводится СФЦ дерева отказов, изображенная на рис.73, и задаются одинаковые статические вероятности отказов всех элементов $p_i = 0.33$, i = 1, 2, ..., 50.

Затем, с помощью ПК АСМ СЗМА, выполняются решения 6 задач для логических критериев отказа подсистем (верхние события):

$$y61, y62, y63, y64, y65, y66$$
 (53)

и 10 задач для противоположных критериев (безотказной работы):

y"61, *y*"62, *y*"63, *y*"64, *y*"65, *y*"66, *y*"67, *y*"68, *y*"69, *y*"70. (54)

{Проекты. Тест_10. Примеры_10_2. Пример_10_2_ИЛИ_И_5_у61} {Проекты. Тест_10. Примеры_10_2. Пример_10_2_ИЛИ_И_5_не_у61}

На рис.74 изображен вид интерфейса пользователя ПК АСМ СЗМА после решения первой из указанных задач Примера 10.2.

Рис. 74. Результаты решения Примера 10_2_ИЛИ_И_5_у61

Характеристики времени выполнения ПК АСМ СЗМА этапов моделирования и расчетов, размеры логических и вероятностных функций и вычисленные вероятности отказов и безотказной работы всех задач Примера 10.2 по критериям (53) и (54), приведены в табл.29

							Таблица 29
Nº	ЛКФ Чисно эн-р	Время	решения	(мин' сек'')	Размер ФРС	Размер ВФ	Вероятность безотказн. /отказа системы
	системы				Ψι	DΨ	"Статический расчет"
		ФРС	BΦ	Расчеты			"Приближенный расчет" метолика Risk Spectrum
1	y61	<00! 01 !!			5	5	0.8649874893
1	5		<00.01		5	5	0.8649874893
	y"61		<0.01.0.1		1	1	0.1350125107
2	5		<00 01		1	1	0.1350125107
2	y62		<001.01	"	25	25	0.748203356646
3	10		<00 01		23	23	0.944003473059
4	y''62		<00' 01		2	2	0.251796643354
*	10		<00 01		2	3	0.251796643354
5	y63		<00' 01		125	125	0.647186542951
3	15		<00 01		123	123	0.989691940626
6	y"63	/63			2	7	0.352813457049
U	15		<00 01		5	/	0.352813457049
7	y64		00' 01'	,	625	625	0.559808262896
,	20		00 01				0.999422214067
8	<i>y</i> "64		<00' 01		4	15	0.440191737104
_	20					0.443928067135	
9	<i>y</i> 65	00' 14"	00' 02"	00' 01"	3125	3125	0.484227143811
	23						0.99999523305
10	<i>y</i> "65 25		<00' 01		5	31	0.515772856189
	23						0.515772856189
11	<i>y</i> 00 30	06' 24''	01' 10"	00' 10"	15625	15625	0.410050421570
	y"66					63	0.5955558255
12	30		<00' 01	"	6		0 581149578624
	v67	Залача н	е решалась	т к требует			0.362300374379
13	35	лана п	орядка 20	часов	78125	78125	-
	v"67		-F M				0 637699625621
14	35		<00' 01	"	7	127	0.637699625621
							0.313385291206
15	<i>y</i> 00 <i>40</i>	- 3a	дача не рег	шалась	390625	390625	-
							0 (0((14700704
16	<i>y</i> 00 40		<00' 01		8	255	0.686614708704
	40					0.000014700794	
17	<i>y</i> 09 <i>1</i> 5	Задача не решалась			1953125	1953125	0.2/10/4356224
	+3					-	
18	<i>y"69</i> <00' 01"		9	511	0.720025642776		
	43				-	•	0./20923043//0
19	<i>y70</i>	3a	дача не рег	шалась	9 765 625	9 765 625	0.234475926804
	30		-				-
20	<i>y</i> "70		<00' 01		10	1023	0.705524073196
	30						0.76552407319618

В табл.29 время решения задач указано для ПЭВМ 2.2.ГГц.

В электронном виде табл.29 черным цветом выделены результаты прямых (МСО, вероятности отказа), а синим цветом выделены результаты обратных (КПУФ, вероятности безотказной работы) задач данного Примера 10.2, полученные с помощью ПК АСМ СЗМА. Красным цветом выделены варианты задач, непосредственного решения которых на ПК АСМ СЗМА не проводилось по причине очень высоких потребностей машинного времени. В этих строках таблицы приведены оценки ожидаемых размеров логической и вероятностной функций. Результаты расчетов вероятностных показателей вариантов 13, 15, 17, 19 (которые не решались ПК АСМ СЗМА) получены путем вычитания из 1.0 вероятностей соответствующих обратных решений (14, 16, 18, 20), которые были получены с помощью ПК АСМ СЗМА.

Для первых 12 вариантов задач данного примера с помощью ПК АСМ СЗМА получены прямые (МСО, статическая вероятность отказа) и обратные (КПУФ, вероятности безотказной работы) подсистем, содержащих от 5 до 30 элементов включительно. Результаты, приведенные в табл.29, показывают, что при решении без декомпозиции прямых задач данного вида (моделей отказов) линейное увеличение числа элементов приводит к возрастанию в показательной степени размерности логических, вероятностных функций и общего времени решения на ЭВМ. При этом, начиная с варианта №9 (время решения 23 сек, количество МСО 3125) нарастание размерности становится очень быстрым. Вариант №11 был решен на ПК АСМ СЗМА более чем за 20 минут (15725 МСО). По нашим примерным оценкам следующий вариант №13 требует порядка 20 часов работы ПК АСМ СЗМА (78125 МСО). Поэтому этот и следующие варианты № 15, 17 и 19 прямых задач данного примера с помощью ПК АСМ СЗМА не решались.

Все обратные задачи данного примера решены ПК АСМ СЗМА очень быстро. Здесь с увеличением размерности подсистем наблюдается линейное нарастание размерностей моделей и общего времени работы ЭВМ. При этом сохраняется

точность расчетов вероятностных показателей. Поэтому обратный подход к решению этого класса задач, по скорости, на много порядков эффективнее прямого.

В последнем столбце табл.29 приведены результаты расчетов вероятностных показателей: в числителе указаны точные результаты вычислений, полученные с помощью ПК АСМ СЗМА в режиме "Статический расчет". В знаменателе приведены результаты, полученные ПК АСМ СЗМА в режиме "Приближенный расчет" по методике, используемой в ПК Risk Spectrum.

Результаты расчетов показывают, что на данном классе задач при выполнении прямых решений (в данном примере MCO) с увеличение размерности подсистем существенно возрастают различия точных значений вероятностных показателей, вычисляемых ПК АСМ СЗМА на основе многочлена ВФ (числитель) и приближенных значений (знаменатель), полученных на основе методики расчетов, используемой в ПК Risk Spectrum (см. формулу (39)). Однако для всех обратных моделей результаты расчетов по указанным двум методикам полностью совпадают и являются точными (эффект вырожденности системы).

Кроме способа решения обратных задач, преодолеть проблему размерности логического моделирования в ПК АСМ СЗМА систем класса "ИЛИ"_"И", можно с помощью метода декомпозиции. На рис.75 и в табл.30 приведены результаты решения самого высокоразмерного прямого варианта из рассмотренных выше задач (по критерию *у*70), полученных на основе декомпозированной СФЦ (см. рис.75) рассматриваемой "ИЛИ"_"И" системы, полная недекомпозированная СФЦ которой изображена на рис.73.

{Проекты. Тест_10. Примеры_10_2. Пример_10_2_ИЛИ_И_дек_50_у70}

{Проекты. Тест_10. Примеры_10_2. Пример_10_2_ИЛИ_И_дек_50_не_у70}

Рис. 75. Результаты решения Пример_10_1_ИЛИ_И_дек_50_у70

Таблица 30

	ЛКФ Число эл-в системы	Время	решения ((мин' сек'')			Вероятность
N⁰		ФРС ВФ	BФ	Расчеты	Размер ФРС	Размер ВФ	безотказн. / <mark>отказа</mark> системы
							"Статический расчет"
							"Приближенный расчет" методика Risk Spectrum
1	y70	<00' 01"		1	5	0.234475926804	
1	10×5				1	3	Приближенный расчет" методика Risk Spectrum 0.234475926804 0.234475926804
2	y"70 10×5	<001.011			10	10	0.765524073196
			<00 01		10	10	0.765524073196

Как видно из табл.30, при декомпозиции полностью сохраняется точность вычислений вероятностных характеристик (см. варианты 19 и 20 табл.29), существенно сокращаются размеры логических и вероятностных функций, а также время моделирования и расчетов.

Относительным недостатком реализованных в ПК АСМ СЗМА методов односвязной структурной декомпозиции является то обстоятельство, что полностью, в явном виде не представляются логические модели исследуемых систем (полные MCO и полные КПУФ). В принципе, их можно получить, так как вся информация об этой функции содержится в составной совокупности логических уравнений, представляющих основную и декомпозированные подсистемы. Процедура получения из этой совокупности полной ФРС не сложная и разработана в [42]. Поскольку Комплекс позволяет точно вычислять вероятностные показатели без получения полных логических функций, в исходный ПК АСМ СЗМА эта процедура включена не была.

Для решения выданных в ходе аттестации ПК АСМ СЗМА Контрольных примеров Секции №5 Совета по аттестации ПС указанная процедура была включена в аттестуемую базовую версию ПК АСМ СЗМА как вспомогательная. Примеры ее использования будут рассмотрены в следующем параграфе настоящего раздела.

Еще раз отметим, что приведенные в табл.29 (как и во всех других таблицах) результаты расчетов по методике Risk Spectrum получены не с помощью самого ПК Risk Spectrum (к сожалению, у нас нет такой возможности). Мы надеемся, что эксперты, имеющие доступ к аттестованному ПК Risk Spectrum, помогут нам проверить корректность наших оценок этого показателя.

Примеры 10.3. Ограничения размерности вероятностного моделирования

Для иллюстрации типовых случаев ограничений размерности построения многочленов вероятностных функций в ПК АСМ СЗМА воспользуемся вырожденной И ИЛИ-системой, СФЦ которой приведена на рис.76.

Рис. 76. СФЦ "И_ИЛИ" системы из 40 элементов

Система, представленная СФЦ на рис.76, состоит из 20 конъюнктивных (И) подсистем по 2 элемента в каждой. Безотказность различных подгрупп и рассматриваемой системы в целом определяется дизъюнктивным (ИЛИ) объединением этих групп, с нарастанием числа элементов в направлении слева направо.

Все элементы рассматриваемой системы имеют одинаковые статические вероятности безотказной работы $p_i = 0.33, i = 1, 2, ..., 40$. После ввода этих исходных данных в ПК АСМ СЗМА последовательно решаются следующие 8 задач:

Результаты решения этих задач приведены на рис.77 и в табл.31.

Рис. 77. Результаты решения задачи "Пример_10_3_И_ИЛИ_26_ у53"

Таблица 31

Nº	ЛКФ Число элементов	Время решения (мин' сек'')			Размер ФРС	Размер ВФ	Вероятность безотказн. /отказа системы: "Статический расчет"
	системы	ФРС	BΦ	Расчеты			"Приближенный расчет" методика Risk Spectrum
1	y53	00' 02"			13	8191	0.776620266907
1	26	00 02			15	0171	0.776620266907
2	y"53	00' 04"	00' 17"		8102	8102	0.223379733093
2	26	00 04	00 17		0192	0192	1.0
3	y54	00' 01"	00' 09"		14	16383	0.800946319841
5	28	00 01	00 09		17	10202	0.800946319841
4	y"54	00! 12!!	01! 12"	00' 01"	16294	16384	0.199053680159
-	28	00 15	01 15	00 01	10304		1.0
5	y55	00' 01"	00' 47"	00' 01"	15	32767	0.82262326561
5	30	00 01	00 47	00 01	15	52101	0.82262326561
6	y"55	00' 46"	06' 00"	00' 01"	22768	32768	0.17737673439
U	30	00 40	00 00	00 00 00 01		32708	1.0
7	y56	00' 01"	04' 20"	00' 02"	16	65535	0.841939591985
'	32 00 01 04 20 00 0.	00 02	10	03333	0.841939591985		
8	y"56 32	03' 00"	18' 00"	00' 04"	65536	65536	0.158060408015
8		03.00" 18.00"		00 04	03330	03330	1.0

Как видно из результатов, приведенных в табл.31, на рассматриваемом классе вырожденных И_ИЛИ структур главным ограничением размерности выступает процедура построения многочлена вероятностной функции. Причем в данном случае эта проблема проявляется как при прямых, так и при обратных постановках задачи. Поэтому основным способом преодоления проблемы размерности при построении многочленов ВФ в ПК АСМ СЗМА данного класса задач является декомпозиция конъюнктивных групп элементов.

В СФЦ, изображенной на рис.76, преобразовываем все конъюнктивные группы в эквивалентированные вершины средствами двухуровневой декомпозиции. Затем вновь решаем все предыдущие задачи и одну дополнительную задачу по критерию *у*60, которым представляется условие безотказности всей 40-элементной И-ИЛИ системы:

{Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_26_дек_у53} {Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_26_дек_у"53} {Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_28_дек_у54} {Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_28_дек_у"54} {Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_30_дек_у55} {Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_30_дек_у"55} {Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_32_ дек_ у56} {Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_32_ дек_ у"56} {Проекты. Тест_10. Примеры_10_3. Пример_10_3_И_ИЛИ_40_ дек_ у"60}

В Пример_10_3_И_ИЛИ_дек_26_у53.sfc - ПК АСМ СЗМА базовая версия 1.0							
Файл Утилиты Помощь							
🗋 Новая СФЦ 😅 <u>О</u> ткрыты 🙀 Сохраниты 🛛 🧶 <u>С</u> правка 🛄 В <u>ы</u> ход							
▶ ① ОІ А → Х 21 Ваад ЛКФ: у53	Моделирование и расчет	Расчет					
	Параметрь	і моделирования и расчетов					
	у53 🗖 Призна	к полных вычислений					
		авной ФРС					
	К СС СТАТИКА	авной ВФ					
		полной ФРС					
		Сивф [100000					
		атический расчет					
3 3	(BИ 🗆 🗙						
	ລ						
	Число элем	ентов в схеме = 60 Число в					
	- i 🛆	Pi Toi					
	26 1	0.1089 0 🔺					
		0.1089 0					
Be	юдЛКФ у25 7	0.1089 0					
	9	0.1089 0 -1					
▲		Þ					
Результат Диаграммы Отчет							
RØ 12							
0 · [13							
Общее время моделирования 0:00:00							
X = 519 Y = 122 Режим удаления Вершина № 25	D:\Проект ASLS Тест\Exe\Проек	ты\Тест_10\Примеры_10_3\При 🥢					

Получаем следующие результаты.

Рис. 78. Результаты решения задачи "Пример_10_3_И_ИЛИ_дек_26_ у53"

	ПКФ	Время р	ешения (м	лин' сек'')			Вероятность
№	Число эл-в системы	ФРС	ВΦ	Расчеты	Размер ФРС	Размер ВФ	безотказн. /отказа системы
1	y53 26	00' 01"			13	13	0.776620266907
2	<i>y</i> "53 26	00' 01"			1	1	0.223379733093
3	<i>y54</i> 28	00' 02"			14	14	0.800946319841
4	<i>y"54</i> 28	00' 02"			1	1	0.199053680159
5	y55 30	00' 02"			15	15	0.822623265610
6	y"55 30	00' 02"			1	1	0.177376734390
7	y56 32	00' 02"			16	16	0.841939591985
8	y"56 32	00' 02"			1	1	0.158060408015
9	y60 40	00' 02"			20	20	0.900338166353

Таблица 32

Из данного примера следует, что ограничения размерности построения многочленов вероятностных функций на данном классе структур практически полностью снимается средствами односвязной структурной декомпозиции ПК АСМ СЗМА.

Примеры 10.4. Ограничения размерности вычислений

Как показала практика, большинство видов вычислений показателей, реализованных в ПК АСМ СЗМА, выполняются относительно быстро, т.е. в сравнении с этапами логического и вероятностного моделирования временные ограничения вычислений (даже по очень большим вероятностным функциям) не оказывают существенного влияния на временные ограничения решения задач в целом. Исключение составляет только процедура вычисления показателя T_{oF} средней наработки до отказа невосстанавливаемой системы (см. OB, §2.1.6.2). В некоторых случаях время расчета этого показателя может быть очень большим. Проиллюстрируем указанную проблему размерности следующим примером.

На рис.79 изображена СФЦ вырожденной ИЛИ-системы, состоящей из 35 одиночных элементов.

Рис. 79. СФЦ вырожденной ИЛИ-системы из 35 элементов

Безотказность этой системы и всех ее подсистем обеспечивается нагруженным резервированием всех входящих элементов (дублированием). Элементы характеризуются одинаковыми значениями средней наработки до отказа $T_{oi} = 0.4$ года, i = 1, 2, ..., 35. Заданная наработка системы составляет 1 год (t = 8760 час.). Требуется вычислить вероятности безотказной работы и средние наработки до отказа подсистем, определяемых следующими логическими критериями:

у63 - первые 15 элементов, {Проекты. Тест_10.Пример_10_4.Пример_10_4_ИЛИ_15_ у63};
у64 - первые 20 элементов, {Проекты. Тест_10.Пример_10_4.Пример_10_4_ИЛИ_20_ у64};
у65 - первые 25 элементов, {Проекты. Тест_10.Пример_10_4.Пример_10_4_ИЛИ_25_ у65};
у66 - первые 30 элементов, {Проекты. Тест_10.Пример_10_4.Пример_10_4_ИЛИ_30_ у66};

В табл.33 приведены результаты моделирования и расчетов указанных задач, выполненные с помощью ПК АСМ СЗМА.

Таблица 33

N⁰	ЛКФ Число эл-в	Время р	Время решения (мин' сек")		Размер	Размер	Вероятность безотказн. раб.
	системы	ФРС	BΦ	Расчеты	ΨΓ	BΨ	Ср. нараб до оказа
1	y63		<00'01"		15	15	0.723282252983
1	15	<00 01			15	15	1.327 год.
2	y64	<00' 01"			20	20	0.819677736276
4	20		-00 01		20	20	1.439 год.
3	y65	<00'	01"	00' 14"	25	25	0.882493554731
5	25	<00 01		00 14	00 14 25	25	1.526 год.
4	y66	66 <00' 01"	08' 44"	16	65535	0.923427288486	
	30	<00" 01"				1.598 год.	

Столь высокая степень нарастания времени расчета средней наработки до отказа обусловлена тем, что в ПК АСМ СЗМА в процессе вычисления этого показателя используется процедура получения точного аналитического решения интеграла от вероятностной функции (см. ОВ, выражения (30), (31)). На получение этого аналитического решения и тратится основное время, а сам расчет выполняется быстро.

Эффективных средств преодоления данного ограничения размерности для этого способа вычисления T_{oF} пока не найдено. Декомпозиция здесь не помогает. Более того, при вычислении этого показателя на основе декомпозированной СФЦ могут быть получены только приближенные значения T_{oF} . В большинстве случаев они имеют погрешность в сторону уменьшения (см. Тест_9), что бывает допустимо в инженерных расчетах. Однако при декомпозиции некоторых вырожденных дизъюнктивных структур погрешность вычисления данного показателя может быть положительной. Поэтому, если требуется гарантированная точность вычисления средней наработки до отказа, рекомендуется либо отказаться от декомпозиции, либо декомпозировать только конъюнктивные односвязные подсистемы. Тогда T_{OF} , на основе такой конъюнктивно декомпозированной СФЦ, вычисляется точно. Этот случай проиллюстрирован в Примере 9.2 Теста 9.

Примеры 10.5. Высокоразмерная декомпозированная СФЦ с циклами

Корректный учет в СФЦ реальных циклических (мостиковых) связей между элементами и подсистемами является важной функциональностью ПК АСМ СЗМА. Эта функциональность подтверждена решением с помощью ПК АСМ СЗМА примеров Теста_2. Однако влияние на размерность множества циклических связей при декомпозиции в указанном тесте проиллюстрировано не было. Поэтому в данном Примере 10.5 будут рассмотрены возможности ПК АСМ СЗМА решать задачи анализа высокоразмерных систем с множественными циклическими связями с помощью декомпозированных СФЦ.

Воспользуемся еще раз примером, описанным в Тесте_2. Исходная функциональная схема системы электроснабжения (СЭС) приведена на Рис. 12. В примере положим, что каждый из 15 элементов этой системы представляет собой 100-элементную ИЛИ-подсистему (см. один столбец рис.69.). Однако, в отличие от Примера_10.1, здесь будем полагать, что эта СФЦ определяет условия работоспособности (безотказности) 100-элементной ИЛИ-подсистемы. Значение вероятностей $p_i = 0.0033, i = 1.1, 1.2, ..., 15.100$ характеризуют безотказность каждого из 1500 элементов декомпозированной СЭС.

Исходная СФЦ СЭС (см. Рис. 13), состоящая, теперь, из 15 эквивалентированных вершин (подсистем) размещается в основном окне ПК АСМ СЗМА (см. рис.80). Каждая из 15 ее функциональных вершин декомпозируется (преобразуется в эквивалентированную вершину). В дополнительных окнах эти вершины представляются подграфами СФЦ соответствующими 100-элементным дизъюнктивным подсистемам. С помощью ПК ACM C3MA решаются две задачи прямого и обратного вариантов моделирования и расчета статических показателей безотказности и отказа данной системы при $p_i = 0.0033$ всех 1500 элементов.

> {Проекты. Тест_10. Пример_10_5. Пример_10_5_ЦИКЛ_дек_15_100_у25} {Проекты. Тест_10. Пример_10_5. Пример_10_5_ЦИКЛ_дек_15_100_не_у25}

Декомпозированная указанным образом СФЦ СЭС, введенная в ПК АСМ СЗМА, приведена на рис.80.

Рис. 80. Одноуровневая циклическая декомпозированная система из 1500 элементов

Результаты решения указанных задач приведены в табл.34

Таблица 34

N⁰	ЛКФ	Общее время решения	Размер ФРС		Размер ВФ		Вероятность безотказн. /отказа системы
	Число эл-в системы	сло эл-в (мин' сек")	Осн.	Полгр.	Осн.	Полгр.	"Статический расчет"
			СФЦ	СФЦ	СФЦ	СФЦ	"Приближенный расчет" методика Risk Spectrum
1	y25	00' 03"	92	100	158	100	0.001924382132
1	15×100						0.00333445442816527
2	y"25 15×100	00' 03"	31	1	207	1	0.998075617868
							0.999999902256469

В первой строке таблицы в столбцах "размер ФРС" и "размер ВФ" указаны размеры логических и вероятностных моделей, сформированных ПК АСМ СЗМА, на основе декомпозированной СФЦ (92 и 100 конъюнкций в логических ФРС, 158 и 100 одночленов в многочленах ВФ основной СФЦ и декомпозированных подсистем соответственно). Отметим что размерность полной (развернутой) логическая ФРС, получаемой, например, на основе недекомпозированной СФЦ рассматриваемой системы из 1500 элементом, характеризуется числом конъюнкций, равным **7.40018E+019**. Естественно, что получить такую ФРС в явном виде не представляется возможным. Но в данном случае, в этом нет необходимости, поскольку ПК АСМ СЗМА на основе декомпозированных моделей корректно вычисляет и точные и приближенные вероятностные характеристики системы.

Из данных в табл.34 следует, что учет циклических связей на уровне основной СФЦ практически не сказался на общем времени решения задачи. Результаты моделирования и точных расчетов вероятностных показателей прямой и обратной задач ПК АСМ СЗМА, оказались согласованными (в сумме дают точно 1.0). Мы полагаем, что подтвердить корректность моделирования и расчетов этой высокоразмерной системы с циклами можно следующими двумя способами.

1. Использовать ПК АСМ СЗМА

Для этого сначала рассчитываются собственные вероятности безотказной работы каждой 100-элементной декомпозированной подсистемы. Как было показано ранее (см. Пример 10.1) ее СФЦ является вырожденной ИЛИ-структурой, и поэтому расчет можно выполнить и вручную и с помощью другого ПК (например, Risk Spectrum). По нашим оценкам эта вероятность равна **0.281468476852** (см. строку 1 табл.26). Затем с помощью ПК АСМ СЗМА решается задача, аналогичная, например: *{Проекты . Тест_2 . Пример_2_1 . Пример_2_1_0.5}*. Но здесь, вместо статических параметров элементов 0.5, вводятся значения вычисленной вероятности 0.281468476852 безотказной работы соответствующих 100-элементных ИЛИ-подсистем. После включения кнопки "Моделирование и расчет" получаемый ПК АСМ СЗМА результат составляет 0.001924382132, т.е. равен значения проверяемой системной характеристики (см. табл.34, строка 1).

2. Использовать ПК Risk Spectrum.

Для этого необходимо разработать дерево отказов СЭС. Можно воспользоваться традиционным приемом умозрительного перебора минимальных сечений отказов СЭС, функциональная схема, которой приведена на рис.12. Однако даже для такой небольшой, но многоцикличной, структуры сделать это быстро и правильно бывает не просто. Можно, для построения правильного ДО СЭС, воспользоваться следующим очевидным приемом. Взять уже полученную с помощью ПК ACM C3MA (см. Пример_2.3) логическую ФРС отказа СЭС (12). Эта ФРС представляет все МСО исследуемой СЭС, поэтому на ее основе не сложно построить точное дерево отказов исследуемой системы. Оно изображено на рис.81.

Рис.81. Дерево отказов СФ (начало)

Рис.81. Дерево отказов СЭС (продолжение)

Failure of power su from X3

4

Failure of po from X3

ver supply Failure of X9

Failure of two paths from X4

Failure of two paths from X9

3FX6-

A FX12 FX13

Failure of power supply to X6 @FX6

Ĺ

×2

X2 failure

Failure of power supply from X1

4

X4 failure

X1 failure

Failure of power supply from X6

X6

Рис. 81. Дерево отказов СЭС (окончание)

Изображенное на рис.81 дерево отказов СЭС разработано специалистами СПбАЭП в НИР "Технология 2004" (см. [20], приложение 4, рис.2.1.10).

Данное дерево отказов СЭС представлено в форме, пригодной для прямого ввода в ПК Risk Spectrum. Задавая в качестве вероятностей отказов элементов СЭС (базисных событий ДО) значения

$$Qi = 1 - 0.281468476852297 = 0.718531523147703,$$

(в нашем случае это вероятности отказа 100-элементных декомпозированных подсистем, представляемых отдельными вершинами СЭС). Если решить задачу моделирования отказа СЭС на основе приведенного ДО с помощью ПК Risk Spectrum, то ожидаемые результаты, по нашим оценкам, должен составить:

- а) состав минимальных сечений, сформированных аттестованным ПК Risk
 Spectrum, должен полностью совпасть с решением (12) и составить 31
 MCO;
- b) вероятность отказа СЭС, вычисленная ПК Risk Spectrum (при расчете "минимальной верхней границе сечения"):

$$Q_{C \ni C} = 0.999999902256469, \tag{56}$$

Поскольку у нас не было возможности решения этого примера непосредственно с помощью аттестованного ПК Risk Spectrum, была проведена имитация этого решения с помощью ПК АСМ СЗМА. Для выполнения имитации разработана СФЦ ДО СЭС:

Рис. 82. СФЦ дерева отказов недекомпозированной СЭС

СФЦ на рис.82 является точной логической копией вышеприведенного (см. рис.81) дерева отказов СЭС, подготовленного для ПК Risk Spectrum. Серым цветом В этой СФЦ закрашены функциональные вершины, непосредственно представляющие отказы 15 декомпозированных подсистем СЭС (100—элементных ИЛИ-подсистем каждая). Как было вычислено раньше, вероятности отказов этих элементов равны 0.718531523147703. Незакрашенные (белые) функциональные вершины в СФЦ ДО СЭС являются размножениями вершин, представляющих отказы соответствующих 15 подсистем.

На основе приведенной СФЦ ДО СЭС с помощью ПК АСМ СЗМА были решены две задачи

{Проекты. Tecm_10. Пример_10_5. Пример_10_5_ЦИКЛ_ДО_15_у60} {Проекты. Tecm_10. Пример_10_5. Пример_10_5_ЦИКЛ_ДО_15_ не_у60}

Таблица 35

Nº	ЛКФ Число эл-в	Общее время решения	Размер ФРС	Размер ВФ	Вероятность безотказн. /отказа системы	
	системы	(мин' сек")	410	DŦ	ВФ "Статический расчет" "Приближенный расчет"	
	СИСТСМВІ				системы "Статический расчет" "Приближенный расчет" методика Risk Spectrum 0.001924382132 0.003334454428	
1	y''60	<00' 01"	92	191	0.001924382132	
1	15	-00 01	12	171	0.003334454428	
2	<i>y60</i> 15×100 <0	<00' 01"	21	216	0.998075617868	
		~00 01	51	210	0.999999902256469	

Полученные на результаты приведены в табл.35

Все результаты логического моделирования и расчетов показателей полностью совпали с данными, приведенными в табл.34 и (56). Поэтому теперь корректность моделирования и расчетов высокоразмерных Примеров {10_5_ЦИКЛ_дек_15_100_y25} и {10_5_ЦИКЛ_дек_15_100_не_y25} для СЭС из 1500 элементов, можно подтвердить (косвенно) решением с помощью ПК Risk Spectrum {Пример_10_5_ЦИКЛ_ДО_15_у60} на основе дерева отказов СЭС разработанной в СПбАЭП (см. рис.79). Мы ожидаем, что результаты, полученные с помощью ПК Risk Spectrum совпадут с логической ФРС (12), а вычисленная вероятность отказа СЭС будет равной **0.99999902256469** (см. (56)). В заключение данного Теста_10 рассмотрим еще один пример моделирования системы большой размерности с циклическими связями, как на уровне основной СФЦ, так и во всех СФЦ декомпозированных подсистем.

{Проекты. Тест_10. Пример_10_5. Пример_10_5_ЦИКЛ_ЦИКЛ_дек_15_15_у25.sfc} {Проекты. Тест_10. Пример_10_5. Пример_10_5_ЦИКЛ_ЦИКЛ_дек_15_15_не_у25.sfc}

Пример разработан на основе той же циклической СЭС. Положим, что каждый из 15 элементов СЭС представляет собой аналогичную по составу элементов и структуре подсистему. Тогда декомпозированный граф СФЦ этой системы будет иметь вид, приведенный на рис.83. В целом эта СФЦ представляет условия работоспособности системы, состоящей из 225 элементов.

Рис. 83. СФЦ двухуровневой циклической системы из 225 элементов

Безотказность основной части этой системы определяется 92 КПУФ эквивалентированных элементов (подсистем). При этом, работоспособность каждого одного эквивалентированного элемента 1, 2, 3, ..., 15 основной СФЦ представляется 92 КПУФ простых элементов соответствующей декомпозированной подсистемы. Ожидаемая размерность полной (развернутой до минимальной дизъюнктивной нормальной формы) ФРС безотказности рассматриваемой системы оценивается числом **3.49409450070874E+19** конъюнкций (КПУФ).

Отказ основной части системы определяется 31 МСО эквивалентированных элементов. При этом, отказ каждого одного эквивалентированного элемента 1, 2, 3, ..., 15 основной СФЦ представляется 31 МСО простых элементов соответствующей декомпозированной подсистемы. Ожидаемая размерность полной (развернутой до минимальной дизъюнктивной нормальной формы) ФРС отказа рассматриваемой системы, по нашей оценке составляет **8 621 131** конъюнкцию (МСО). Задавая статические вероятности безотказной работы элементов, равными $p_i = 0.9$ и решая с помощью ПК АСМ СЗМА задачи для критериев y25 (безотказность) и y"25 (отказ) получаем:

Таблица 36 Табл.36

N₂	ЛКФ Общее вр решени		Размер ФРС		Pa	ізмер ВФ	Вероятность безотказн. /отказа
Число эл системь	число эл-в системы	(мин' сек'')	Осн. СФЦ	Подгр. СФЦ	Осн. СФЦ	Подгр. СФЦ	системы
	v25			92	158	158	
1	15×15=225	<00' 01"	92		3.49409450070874E+19 КПУФ		0.886737948063
	v"25				207	207	
2	15×15=225	00' 01"	31	31	8 621 131 MCO		0.113262051937

Результаты, приведенные в табл.36 показывают, что множественные двухуровневые циклические связи в основной и декомпозированных СФЦ не оказывают существенного влияния на ограничения размерности ПК АСМ СЗМА.

Выводы по результатам Теста №10

Рассмотренные в Тесте №10 примеры и задачи иллюстрируют и подтверждают следующие ограничения и функциональные возможности по размерности моделирования систем с помощью ПК АСМ СЗМА:

- Обеспечивается возможность ввода в основное окно ПК АСМ СЗМА графа основной СФЦ, содержащей до 400 вершин, а в дополнительные окна графов СФЦ декомпозированных подсистем до 100 вершин /Пример 10.1/;
- Все функциональные ограничения размерности процессов моделирования и расчетов показателей надежности и безопасности систем в ПК АСМ СЗМА определяются техническими характеристиками используемой ЭВМ (объемом оперативной памяти, быстродействием) и временем, выделенным на решение задачи /Примеры 10.2 – 10.5/;
- На этапе построения логических моделей к наибольшему росту размерности ФРС приводят задачи прямого моделирования структурных фрагментов СФЦ вида "ИЛИ-И". Эффективными способами преодоления этого ограничения размерности являются использование обратных подходов к постановке задач моделирования и структурная декомпозиция /задачи Примера 10.2 /;
- На этапе построения вероятностных моделей к наибольшему росту размерности ВФ приводят задачи прямого и обратного моделирования структурных фрагментов СФЦ вида "И-ИЛИ-систем". Эффективными способами преодоления этого ограничения размерности являются структурная декомпозиция /задачи Примера 10.3 /;
- Существующие в ПК АСМ СЗМА ограничения размерности вычислений проявляются только при расчете средней наработки до отказа невосстанавливаемой системы. Причем они возникают при наличии в СФЦ любого уровня декомпозиции фрагментов вырожденных "ИЛИ-систем" с числом одиночных головных функциональных вершин более 20. /Пример 10.4/;

- Наличие циклических связей в СФЦ на всех уровнях декомпозиции не приводит к дополнительным ограничениям размерности моделирования и расчетов в ПК АСМ СЗМА /Пример 10.5/;
- Способность ПК АСМ СЗМА выполнять автоматизированное структурнологическое моделирование и вероятностный анализ систем большой размерности и высокой структурной сложности продемонстрирован задачами Примера 10.5. Здесь общее число элементов в исследуемых системах составляло 1500 и 225. Размеры полных (недекомпозированных) логических ФРС безотказности этих систем достигали величин 7.40018E+19 и 3.49409450070874E+19 конъюнкций соответственно, а полная ФРС отказа последнего варианта многоциклической СЭС составила 8 621 131 МСО.

ПЕРЕЧЕНЬ ИСТОЧНИКОВ

- Программный комплекс автоматизированного структурно-логического моделирования и расчета надежности и безопасности АСУТП на стадии проектирования (ПК АСМ СЗМА). СВИДЕТЕЛЬСТВО № 2003611101 об официальной регистрации программ. Автор: Можаев А.С. Правообладатель: ОАО "СПИК СЗМА". М.: Роспатент РФ, 2003. Internet сайт: http://www.szma.com.
- 2. Программный комплекс автоматизированного структурно-логического моделирования и расчета надежности и безопасности АСУТП на стадии проектирования (ПК АСМ СЗМА). Основы теории. Инструкция пользователя. Описание программы. Текст программы. СПб.: ОАО "СПИК СЗМА", 2002. -142 с.
- Нозик А.А., Можаев А.С., Потапычев С.Н., Скворцов М.С. Программный комплекс автоматизированного моделирования и расчета надежности и безопасности АСУТП на стадии проектирования. // Материалы III Международной научно-практической конференции: "Моделирование. Теория, методы и средства". Часть 1. Новочеркасск: НПИ, 2003, С.28-35.
- 4. Можаев А.С. Технология и программный комплекс автоматизированного моделирования и оценки надежности, безопасности и риска опасных производственных объектов. // Пятый тематический семинар: "Об опыте декларирования промышленной безопасности и страхования ответственности. Развитие методов оценки риска аварий на опасных производственных объектах". М.: Федеральная служба по экологическому, технологическому и атомному надзору. НТЦ "Промышленная безопасность", 2005, с.50-58.
- 5. Можаев А.С. Общий логико-вероятностный метод анализа надежности сложных систем. Уч. пос. Л.: ВМА, 1988. -68с.
- Можаев А.С. Теоретические основы и опыт структурно логического автоматизированного моделирования и анализа систем. // В кн. "Методические вопросы исследования надежности больших систем энергетики", Вып.41. Вычислительные модели исследования надежности электроэнергетических систем. Сопоставительный анализ. Иркутск: СЭИ СО АН СССР, 1991, с.91-105.
- 7. Можаев А.С. Теория и практика автоматизированного структурно-логического моделирования систем. // Доклады международной конференции по информатике и управлению. (ICI & C') Том 3. СПб.: СПИИРАН, 1997, с.1109-1118. Mozhaev A.S. Theory and practice of automated structural-logical simulation of system. International Conference on Informatics and Control (ICI&C'97). Vol. 3. St.Petersburg: SPIIRAS, 1997, p.1109-1118
- 8. Акт о внедрении научно-исследовательских и учебно-методических работ д.т.н., профессора Можаева А.С. в Военно-Морском Инженерном Институте, 21.02.2002 г.
- Можаев А.С., Алексеев А.О., Громов В.Н. Автоматизированное логико-вероятностное моделирование технических систем. Руководство пользователя ПК АСМ версии 5.0. СПб.: ВИТУ, 1999, 63 с.
- Можаев А.С., Алексеев А.О., Сорокин Р.П. Методика автоматизированного логиковероятностного моделирования систем. (Программный комплекс "ПК АСМ, версия 5.0"). СПб.: ВМА, 1999, 121 с.
- Можаев А.С., Ершов Г.А, Татусьян О.В. Автоматизированный программный комплекс для оценки надежности систем. (ПК ACMNEW, версия 2.01). СПб.: ВВМИУ им. Ф.Э. Дзержинского, 1994.
- Акт о внедрении научных и практических результатов работ дтн, профессора Можаева А.С. в Научно-Исследовательском Центре безопасности технических систем МО РФ от 18.03.2002 г.

- Можаев А.С. Программный комплекс автоматизированного структурно-логического моделирования сложных систем (ПК АСМ 2001). // Труды Международной Научной Школы "Моделирование и анализ безопасности, риска и качества в сложных системах" (МА БРК – 2001). СПб.: Издательство ООО "НПО "Омега", 2001, с.56-61. Свидетельство об официальной регистрации № 2003611099. М.: РОСПАТЕНТ РФ, 2003.
- Девочкин В.А., Масленников И.А., Гаенко В.П., Лобынцев В.В. Оценка рисков и безопасности технологий по подъему АПК "Курск". Сайт "Российский подводный флот" <u>http://rpf.ru/txt/04/04/21-010004.html</u>
- Расчеты показателей надежности объекта № 635 (Центральное хранилище изотопов), расположенного на территории ФГУП "Северное машиностроительное предприятие", г. Северодвинск (отчет рег. № Р-03/05 от 25.01.2005 г. по договору № 04/739/2506965 от 10.03.2004 г. между ФГУП "ПО "Севмаш и ООО "РЭСцентр");
- 16. Программа управления надежностью (ресурсом) объекта использования атомной энергии (объект использования атомной энергии объект № 635 ФГУП "ПО "СЕВМАШ", склад изотопов, центральное хранилище изотопов)). СПб.: РЭСцентр, рег. № Р-21/05, 2005, 45 с.
- 17. Методики определения остаточного ресурса объектов использования атомной энергии. Инв.№ 25.11-1.03.137-2004, ФГУП "ПО "Северное машиностроительное предприятие", г. Северодвинск, 2004.
- 18. Ибадулаев В.А., Космачев В.П., Можаев А.С., Степанов И.В., Павлов П.М., Филатов В.С. Расчет риска эксплуатации установки первичной переработки нефти ЭЛОУ-АТ-6. // Электронный научно-технический журнал "Промышленная безопасность труда", № 8, 2004. http://www.alf-center.com/pbt/magazine8/article_1.html
- 19. Рылов М.И., Камынов Ш.В., Анисимов Н.А., Можаев А.С., Никитин В.С. Оптимизация риска при утилизации АПЛ. // Управление риском №3, 2003, с.25-32.
- 20. ФГУП СПбАЭП, ОАО "СПИК СЗМА", (Санкт-Петербург), ИПУ РАН им. В.А.Трапезникова (г. Москва). НИР "Сравнительный анализ технологий деревьев отказов и автоматизированного структурно-логического моделирования, используемых для выполнения работ по вероятностному анализу безопасности АЭС и АСУТП на стадии проектирования" (шифр "Технология 2004"), 2005, 282 с.
- 21. Викторова В.С., Кунтшер Х., Петрухин Б.П., Степанянц А.С. Relex программа анализа надежности, безопасности, рисков. // "Надежность", №4(7), 2003, с. 42-64.
- 22. Relex программа анализа надежности, безопасности, рисков. Компания Relex Software Corporation (США). <u>http://www.relexsoftware.com/about/index.asp</u>.
- 23. Программный комплекс "Risk Specnrum" Шведской фирмы "Relcon AB". Internet, сайт <u>http://www.riskspectrum.com</u>.
- 24. Risk Spectrum PSA Professional 1.20 / Teory Manual. RELCON AB, 1998. -57p.
- 25. Risk Spectrum Professional. Руководство пользователя. // Техническая документация к программному комплексу фирмы Ву Relcon AB. -119c.
- 26. Можаев А.С. Универсальный графоаналитический метод, алгоритм и программный модуль построения монотонных и немонотонных логических функций работоспособности систем. // Труды Международной научной школы: "Моделирование и анализ безопасности, риска в сложных системах" (МА БР – 2003). СПб.: СПбГУАП, 2003, с.101-110.
- 27. Библиотека программных модулей автоматического построения монотонных и немонотонных логических функций работоспособности систем и многочленов вероятностных функций (ЛОГ & ВФ). СВИДЕТЕЛЬСТВО № 2003611100 об официальной регистрации программ. Авторы: Можаев А.С., Гладкова И.А. Правообладатель: Можаев А.С. М.: Роспатент РФ, 2003.

- 28. Константинов Б.А., Лосев Э.А. Логико-аналитический метод расчета надежности восстанавливаемых систем электроснабжения. // "Электричество", №12, 1971.
- 29. Можаев А.С., Громов В.Н. Теоретические основы общего логико-вероятностного метода автоматизированного моделирования систем. СПб.: ВИТУ, 2000. –145 с.
- 30. Рябинин И.А., Черкесов Г.Н. Логико-вероятностные методы исследования надежности структурно-сложных систем. М.: Радио и связь, 1981, -286 с.
- 31. Рябинин И.А. Надежность и безопасность сложных систем. СПб.: Политехника, 2000. 248 с.
- Рябинин И.А. Задача №35 и история ее исследований. // Труды Международной научной школы: "Моделирование и анализ безопасности, риска в сложных системах" (МА БР – 2004). СПб.: СПбГУАП, 2003, с.408-416.
- 33. Ершов Г.А., Козлов Ю.И., Солодовников А.С., Можаев А.С. Оценка безопасности атомных энергетических объектов на стадии проектирования. // Журнал "Тяжелое машиностроение", № 8/2004, М.: ООО "Дом печати "Столичный бизнес", 2004. с. 33-39.
- 34. РД 03-418-01. Методические указания по проведению анализа риска опасных производственных объектов. // Нормативные документы межотраслевого применения по вопросам промышленной безопасности и охраны недр. Выпуск 10. М.: ГУП "НТЦ ПБ" Госгортехнадзора России, 2001. - 60с.
- 35. Рылов М.И., Камынов Ш.В. (РЭСцентр), Анисимов Н.А. (ЦНИИ им. А.Н. Крылова), Можаев А.С. (СПИК «Севзапмонтажавтоматика»), Никитин В.С. (НИПТБ «Онега»). Использование классических критериев принятия решений при выборе мероприятий по снижению экономического ущерба от ядерных и радиационных аварий. // Атомная энергия, Т. 97, вып. 1, июль 2004, с 54-60.
- Положение об аттестации программных средств, применяемых при обосновании безопасности объектов использования атомной энергии (РД-03-17-2001). М.: Госатомнадзор России, 2001, 16 с.
- 37. Требования к составу и содержанию отчета о верификации и обосновании программных средств, применяемых для обоснования безопасности объектов использования атомной энергии (РД-03-34-200). М.: Госатомнадзор России, 2000, 21 с.
- 38. Гордон Б.Г. Идеология безопасности. М.: Труды НТЦ ЯРБ, 2005 г., 117 с.
- 39. Калиберда И.В. Качество и надежность программных средств, используемых для обоснования безопасности в области прочности и устойчивости к внешним воздействиям. // Вестник Госатомнадзора России № 1, 2003 г.
- 40. Черкесов Г. Н., Можаев А.С. Логико-вероятностные методы расчета надежности структурно-сложных систем. // В кн.: Надежность и качество изделий. М.: Знание, 1991, с.34-65.
- 41. Обломский С.Б., Ибадулаев В.А., Космачев В.П. Поздняков В.А., Ермоленко А.Д., Маркелова В.А. и др. Расчетно-пояснительная записка к плану локализации и ликвидации аварийных ситуаций установки ЭЛОУ-АТ-6 в составе ООО «ПО» Киришинефтеоргсинтез» СПб: АНО «РНТЦ ЧС», ООО «Ленгипронефтехим», 2005, 380 с.
- 42. Нозик А.А. Оценка надежности и безопасности структурно-сложных технических систем. Диссертация на соискание ученой степени кандидата технических наук. СПб.: СПИИРАН, 2005. -168 с.
- 01.039.6-10.АТХ.ОН. ООО «КИНЕФ». Автоматизированная система управления технологическим процессом насосной 910-45 и относящихся к ней резервуарных парков АСУТП 910-45. Проектная оценка надежности системы. СФЦ содержит 441 вершину, 333 элемента,16 функций. СПб.: ОАО "СПИК СЗМА", 2001 г. -72с.
- 44. 02.008.6-10.АТХ.ОН. ООО «КИНЕФ». Автоматизированная система управления технологическим процессом газофракционирующей установки АСУТП ГФУ. Проектная оценка

надежности системы. СФЦ содержит 108 вершин, 94 элемента,13 функций. СПб.: ОАО "СПИК СЗМА", 2002 г. -31с.

- 45. 02.022.6-10.АТХ.ОН. ООО «КИНЕФ». Автоматизированная система управления технологическим процессом пожаротушения резервуарного парка об. 910-27 от существующей системы пожаротушения (АСУТП ПТ 910-27). Проектная оценка надежности системы. СФЦ содержит 87 вершин, 79 элемента, 4 функции. СПб.: ОАО "СПИК СЗМА", 2002 г. -21с.
- 46. 02.043.6-10.АТХ.ОН. МОЗЫРСКИЙ НПЗ. Моделирование и расчет показателей надежности комплекса технических средств автоматизированной системы управления парка сжиженных газов ТСБ, расширение. Технический отчет. СФЦ содержит 393 вершины, 111 элементов, 22 функции. СПб.: ОАО "СПИК СЗМА", 2003 г. -81с.
- 47. 03.002.6-10.АТХ.ОН. ООО «КИНЕФ». Автоматизированная система управления технологическим процессом пожаротушения резервуарных парков товарно-сырьевой базы нефти, относящихся к ОПУ1. (АСУТП ПТ ТСБН-1). Проектная оценка надежности системы. СФЦ содержит 60 вершин, 52 элемента, 5 функций. СПб.: ОАО "СПИК СЗМА", 2003 г. -23 с.
- 48. 03.035.6-10.АТХ.ОН. ООО «КИНЕФ». Автоматизированная система управления технологическим процессом пожаротушения резервуарных парков товарно-сырьевой базы нефти, относящихся к ОПУ2 и ОПУ3. (АСУТП ПТ ТСБН-2/3). Проектная оценка надежности системы. СФЦ содержит 115 вершин, 110 элементов, 5 функций. СПб.: ОАО "СПИК СЗМА", 2003 г. - 22 с.
- 49. 03.052.6-10.АТХ.ОН. ООО «КИНЕФ». Замена оборудования 1 потока установки ЛГ-24/7 с переводом всей установки на АСУТП с заменой полевого КИПа. Проектная оценка (расчет) надежности системы. СФЦ содержит 134 вершины, 87 элементов, 6 функций. СПб.: ОАО "СПИК СЗМА", 2003 г. -25 с.
- 50. 04.019.6-10-АТХ.ОН. ОАО «Казаньоргсинтез». САУиР компрессорных агрегатов установки Э-200. Проектная оценка (расчет) надежности системы. СФЦ содержит 89 вершин, 68 элемента, 5 функций. СПб.: ОАО "СПИК СЗМА", 2004 г. -23 с.
- 51. 04.026.6-10-АТХ.ОН. ОАО «Казаньоргсинтез». САУ и Р воздушных компрессоров. Проектная оценка (расчет) надежности системы. СФЦ содержит 10 вершин, 8 элементов, 2 функции. СПб.: ОАО "СПИК СЗМА", 2004 г. -17с.
- 52. 04.066.2-10-АТХ.ОН. МОЗЫРСКИЙ НПЗ. Моделирование и расчет показателей надежности автоматизированной системы противоаварийной защиты секции 400 установки ЛК-6У№1 (ПАЗ С-400 ЛК-6У №1) Технический отчет. СФЦ содержит 150 вершин, 111 элементов, 6 функций. СПб.: ОАО "СПИК СЗМА", 2004 г. -31 с.
- 53. 04.065.2-10-АТХ.ОН. МОЗЫРСКИЙ НПЗ. Моделирование и расчет показателей надежности автоматизированной системы противоаварийной защиты секции 100 установки ЛК-6У№1 (ПАЗ С-100 ЛК-6У №1). Технический отчет. СФЦ содержит 164 вершины, 122 элемента, 7 функций. СПб.: ОАО "СПИК СЗМА", 2004 г. -34 с.
- 54. 04.067.2-10-АТХ.ОН. МОЗЫРСКИЙ НПЗ. Моделирование и расчет показателей надежности автоматизированной системы противоаварийной защиты эстакады слива нефти, мазута, вакуумного газойля (ПАЗ КЭСНМВГ). Технический отчет. СФЦ содержит 83 вершин, 71 элемент, 6 функций. СПб.: ОАО "СПИК СЗМА", 2004 г. -29 с.
- 55. Код "РИСК" для выполнения стандартных вероятностных расчетов. М.: ОЦРК, <u>http://www.insc.ru/PSA/risk.html</u>.
- 56. Аракчеева Е.О., Бахметьев А.М., Былов И.А. Программный комплекс "CRISS 4.0" для проведения вероятностного анализа безопасности. Н.Новгород: ФГУП ОКБМ им. Африкантова. http://www.nuclear.ru/productions/view.html?From=25&cat=42.

- 57. Рябинин И.А. Феномен логико-вероятностного исчисления. // Труды Международной Научной Школы МА БР – 2005: "Моделирование и Анализ Безопасности и Риска в Сложных Системах" СПб.: ГОУ ВПО "СПбГУАП", 2005. -422 с.
- 58. Безкоровайный М.М., Костогрызов А.И., Львов В.М. Инструментально-моделирующий комплекс для оценки качества функционирования информационных систем "КОК". Руководство системного аналитика. М.: "Синтега", 2000. 116 с. http://www.bolero.ru/index.php?level=4&pid=22418086.
- 59. Викторова В.С., Степанянц А.С. Программа прогнозирования надежности и безопасности технических систем на основе логико-вероятностных методов "RAY". М.: ИПУ РАН. <u>http://www.ipu.rssi.ru/kommer/vikt/Rmain.htm</u>
- 60. Можаев А.С. Технология автоматизации процессов построения логико-вероятностных моделей систем. // Труды Международной научной конференции "Интеллектуальные системы и информационные технологии в управлении". ИСИТУ-2000, IS@ITC. Псков: ППИ, 2000, с.257-262.
- 61. Бахметьев А.М., Самойлов О.Б., Усынин Г.Б. Методы оценки и обеспечения безопасности ЯЭУ. М.: Энергоатомиздат, 1988. -136 с.
- 62. Ершов Г.А., Солодовников А.С., Ермакович Ю.Л., Соболев А.Н., Блинова Л.Д. Методологические и программные разработки по вероятностному анализу безопасности и риска для радиационных объектов. Санкт-Петербургский институт "Атомэнергопроект" // VIII Международная конференция "Безопасность ядерных технологий", 26-30 сентября 2005 г. Санкт-Петербург, Россия.
- 63. Ковалевич О.М., Уголева И.Р., Попыкин А.И., Рубцов В.С., Зарицкий С.М. Состояние работ по аттестации программных средств, применяемых при обосновании безопасности объектов использования атомной энергии. // Вопросы атомной науки и техники. Серия: Динамика и безопасность ядерных энергетических установок. М.: РНЦ КИ, 1999, с.148-157.
- 64. ГОСТ 27.002-89. НАДЕЖНОСТЬ В ТЕХНИКЕ. Основные термины и определения. М.: ГКС СССР, 1989. -24 с.
- 65. ГОСТ Р 51901 2002. УПРАВЛЕНИЕ НАДЕЖНОСТЬЮ. Анализ риска технологических систем. М.: Госстандарт России. 23 с.
- 66. Reliability: A Practitioner's Guide. Relex Software, 2003.
- 67. Ершов Г.А., Ермакович Ю.Л., Легошин П.В., Парфентьев М.А., Фролов А.С. Программный комплекс для вероятностного анализа безопасности атомных энергетических установок. // Труды Международной Научной Школы "Моделирование и Анализ Безопасности и Риска в Сложных Системах" (МА БР – 2006). СПб.: Издательство ГОУ ВПО "СПбГУАП", СПб., 2006, с.126-132.
- 68. Задание. Описания исходных данных и результатов решения контрольных примеров Секции №5 Совета по аттестации ПС. СПб, 2006, -201 с.
- 69. Бахметьев А.М., Былов И.А., Милакова Ю.В. Отчет о научно-исследовательской работе верификация и обоснование программы CRISS 4.0 для моделирования и анализа систем безопасности ядерной установки при выполнении вероятностного анализа безопасности. Часть 1 (Заключительная редакция). Нижний Новгород: ФГУП ОКБМ им. И.И.Африкантова, 2005, - 88 с.
- 70. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 7.0 (saphire.inel.gov). Reference Manual.