Частотный преобразователь напряжения — это электрический прибор, служащий для преобразования напряжения и частоты переменного тока в напряжение с заданной амплитудой и частотой. Он также способен преобразовывать постоянное напряжение в переменное с заданными характеристиками.
Для чего нужен частотный преобразователь?
Этот вопрос задают множество людей, которым впервые понадобилось подключить трехфазный двигатель насоса или вентилятора. Конечно, любой электродвигатель можно напрямую подключить к сети переменного тока через соответствующую защитную аппаратуру (моторный автоматический выключатель или контактор с тепловым реле).
Рассмотрим процессы, происходящие в электродвигателе в момент прямого пуска с помощью автоматического выключателя или кнопки включения контактора на примере обычного трехфазного асинхронного двигателя.
На статорные обмотки электродвигателя подается переменное напряжение, которое генерирует соответствующее электромагнитное поле этих обмоток. Это поле, направленное в сторону ротора, в свою очередь заставляет генерироваться электрический ток в короткозамкнутых витках ротора. Затем ток в обмотках ротора генерирует ответное магнитное поле, которое и приводит к движению ротора относительно статора. Все эти процессы, возникающие в момент пуска, называются процессом намагничивания статора и ротора.
Трехфазный электродвигатель сам по себе не нужен: на его валу обязательно присутствует нагрузка (самая простая — в виде лопастей вентилятора). В ситуации с нагруженным конвейером всё сложнее. Тем не менее, у этой нагрузки есть момент инерции – момент, который необходимо преодолеть двигателю для запуска вращения вала. Таким образом, все эти электромагнитные и механические силы в момент пуска напрямую соотносятся с обычным пусковым током двигателя. Как несложно догадаться, этот ток будет в несколько раз (2-7) больше номинального тока двигателя, который получится в установившемся режиме работы.
Скорость вращения электродвигателя или число оборотов в минуту
Скорость вращения вала как асинхронных, так и синхронных электродвигателей определяется частотой вращения магнитного поля статора. Магнитное поле вращается соответственно подаваемому на обмотки статора переменному току по трем фазам. Именно это «вращение» электрического тока в статоре приводит к вращающемуся магнитному полю и определяется по формуле:
n = (60 • f / p) • (1 — s)
где n – номинальное число оборотов вала асинхронного электродвигателя, p – число пар полюсов (см. на паспортной табличке), s – скольжение (разность скоростей поля ротора и поля статора), f – частота переменного тока (например, 50 Гц). Число пар полюсов статора зависит от конструкции катушек статора. Скольжение зависит от нагрузки на валу электродвигателя. Таким образом, подключив электродвигатель к сети переменного тока, мы получим вращение с постоянной скоростью.
Зачем нужно регулировать скорость и как это делается?
Заданное в паспортной табличке число оборотов двигателя на 1 минуту не всегда устраивает потребителя. Иногда скорость механизма хочется уменьшить, а давление в трубе наоборот поднять. Возникает потребность в изменении частоты вращения вала электродвигателя. Как видно из формулы выше, наиболее простой способ изменения частоты вращения вала электродвигателя –изменить частоту переменного тока f.
Принцип работы частотного преобразователя
Вот тут и приходит на помощь частотный преобразователь, иначе говоря ЧРП (частотно-регулируемый привод). Он, как говорилось в самом начале, позволяет задавать на своем выходе заданные в настройках амплитуду напряжения и частоту переменного тока.
Частота вы выходе может регулироваться в диапазоне 0.01 — 590 Гц если брать инверторы серии AS3 Toshiba. Для серии S15 Toshiba диапазон регулирования находится в пределах 0.01 — 500 Гц. Для серии nC3E Toshiba диапазон регулирования находится в пределах 0.01 — 400 Гц. Это объясняется функциональным назначением разных серий ПЧ.
Напряжение на выходе может изменяться в диапазоне от 0 В до напряжения питания ПЧ, т.е. текущего напряжения на входе частотного преобразователя. Это свойство можно использовать для получения нужного выходного напряжения и частоты, что ценно, например, для испытания стендового оборудования. Правда для этого придется использовать специальный выходной синусный фильтр, чтобы получить чистые синусоидальное напряжение и ток.
С частотой все понятно, но зачем нужно изменять напряжение?
Дело в том, что для поддержания определенного магнитного поля в обмотках статора требуется изменять не только частоту, но и напряжение. Получается, что частота должна соответствовать определенному напряжению. Этот называется законом скалярного управления U/f (V/f), где U или V — напряжение.
Также существует закон векторного регулирования. Векторное регулирование используется для оборудования, где требуется поддерживать необходимый крутящий момент на валу при низких скоростях электродвигателя, высокое быстродействие и точность регулирования частоты вращения. Векторное управление представляет собой математический аппарат в «мозге» частотного преобразователя, который позволяет точно определять угол поворота ротора по токам фаз двигателя.
Использование частотника позволяет убрать большой пусковой ток, достигая таким образом значительного экономического эффекта при частых пусках и остановках электродвигателя.
Схема частотного преобразователя
Ниже представлена типовая схема частотного преобразователя. Входное сетевое трехфазное или однофазное напряжение подается через опциональный входной фильтр на клеммы диодного моста. Неуправляемый диодный (или управляемый тиристорный) мост преобразует переменное напряжение сети в постоянное пульсирующее напряжение. Для фильтрации пульсаций служит звено постоянного тока из одного или нескольких конденсаторов C.
Напряжение в звене постоянного тока после выпрямления трехфазного напряжения будет равно согласно формуле: 380*1,35 = 513 В.
Дроссель DCL в звене постоянного тока позволяет дополнительно сгладить пульсации напряжения после диодного моста и выполняет функции снижения гармоник выпрямителя, инжектируемых в питающую сеть.
Транзисторы T1-T6 инвертора с помощью специального алгоритма системы управления генерируют на клеммы электродвигателя 3 пакета импульсов, разнесенных по трем фазам на 120 градусов во времени. Ни рисунке ниже показана только одна фаза: пачка выходных импульсов широтно-импульсной модуляции (ШИМ), проходя через обмотку электродвигателя, сгладится до формы, напоминающей синусоиду. Частота импульсов ШИМ (опорная частота) в промышленных преобразователях обычно составляет 3-4 кГц, но для ПЧ малой мощности может доходить до 16 кГц. Чем выше частоты ШИМ, тем будет меньше гармонических искажений «синусоиды» на выходе инвертора. Но при этом возрастают тепловые потери на силовых транзисторах, что уменьшает КПД. В ПЧ Toshiba величину частоты можно изменять, регулируя таким образом тепловые потери.
Выходное напряжение частотного преобразователя будет всегда ниже входного сетевого напряжения. Это связано с потерями в силовом модуле и алгоритме получения ШИМ импульсов.
Между частотным преобразователем и электродвигателем можно установить дополнительный фильтр, позволяющий значительно улучшить форму выходного напряжения после частотника. Это необходимо для того, чтобы импульсы ШИМ не разрушали изоляцию обмоток двигателя и не вызывали перенапряжения на конце длинного кабеля. Подробнее о выходных фильтрах.
Тормозной прерыватель (Brake Chopper)
На схеме частотного преобразователя можно заметить еще один транзисторный ключ T7. Его назначение — сброс энергии звена постоянного тока при значительном превышении напряжения на конденсаторах. Перенапряжение возникает в том случае, когда частота вращения вала электродвигателя превышает частоту тока на клеммах электродвигателя (например, при торможении). Это часто встречается на кранах или крупных вентиляторах, когда невозможно быстро затормозить вращение.
При наступления события превышения напряжения DC, этот транзисторный ключ T7 замыкается, передавая энергию звена постоянного тока на тормозной резистор. Конечно, резистор при этом может очень сильно нагреться и даже разрушится, но при этом не пострадает наиболее дорогое оборудование — частотный преобразователь.
Тормозной резистор является опциональным оборудованием и подключается к специальным клеммам преобразователя частоты.
КПД частотного преобразователя
Такие важные параметры как КПД частотника и производительность воздушного потока для его охлаждения можно посмотреть в соответствующем столбце следующей таблицы на примере серии VF-AS3 TOSHIBA.
Питающая сеть | Допустимая мощность двигателя (kW) | Типоразмер частотника | Размер корпуса | КПД | Мощность тепловыделения на радиаторе охлаждения (Вт) *1 | Мощность тепловыделения передней части инвертора (Вт) *1 | Требуемое значение потока воздушного охлаждения (м³/мин) | Площадь стенок закрытой стальной оболочки без вентиляции (м²) |
---|---|---|---|---|---|---|---|---|
3-фазы 380/480 В | 0.75 | VFAS3-4004PC | A1 | 0,89 | 56 | 26 | 0.32 | 1.13 |
1.5 | VFAS3-4007PC | A1 | 0,93 | 79 | 28 | 0.45 | 1.58 | |
2.2 | VFAS3-4015PC | A1 | 0,94 | 100 | 30 | 0.57 | 2.00 | |
4.0 | VFAS3-4022PC | A1 | 0,96 | 140 | 33 | 0.79 | 2.80 | |
5.5 | VFAS3-4037PC | A1 | 0,96 | 192 | 37 | 1.09 | 3.83 | |
7.5 | VFAS3-4055PC | A2 | 0,96 | 233 | 45 | 1.32 | 4.66 | |
11 | VFAS3-4075PC | A2 | 0,97 | 323 | 53 | 1.84 | 6.47 | |
15 | VFAS3-4110PC | A3 | 0,97 | 455 | 62 | 2.58 | 9.10 | |
18.5 | VFAS3-4150PC | A3 | 0,97 | 557 | 70 | 3.16 | 11.14 | |
22 | VFAS3-4185PC | A3 | 0,97 | 603 | 71 | 3.42 | 12.06 | |
30 | VFAS3-4220PC | A4 | 0,97 | 770 | 94 | 4.37 | 15.40 | |
37 | VFAS3-4300PC | A4 | 0,97 | 939 | 107 | 5.33 | 18.78 | |
45 | VFAS3-4370PC | A4 | 0,97 | 1101 | 123 | 6.25 | 22.02 | |
55 | VFAS3-4450PC | A5 | 0,98 | 1094 | 132 | 6.21 | 21.88 | |
75 | VFAS3-4550PC | A5 | 0,98 | 1589 | 175 | 9.02 | 31.78 | |
90 | VFAS3-4750PC | A5 | 0,98 | 1827 | 199 | 10.37 | 36.54 | |
110 | VFAS3-4900PC | A6 | 0,97 | 2920 | 309 | 16.58 | 58.40 | |
132 | VFAS3-4110KPC | A6 | 0,97 | 3457 | 358 | 19.62 | 69.13 | |
160 | VFAS3-4132KPC | A6 | 0,97 | 4013 | 405 | 22.78 | 80.26 | |
220 | VFAS3-4160KPC | A7 | 0,97 | 5404 | 452 | 30.68 | 108.08 | |
250 | VFAS3-4220KPC | A8 | 0,97 | 6279 | 606 | 35.64 | 125.58 | |
280 | VFAS3-4250KPC | A8 | 0,97 | 6743 | 769 | 38.28 | 134.86 | |
315 | VFAS3-4280KPC | A8 | 0,97 | 7749 | 769 | 43.99 | 154.98 |
*1) В таблице приведены данные для нормального (не тяжелого) режима работы преобразователя частоты.
Области применения и экономический эффект использования частотных преобразователей
Сферы применения преобразователей частоты
- Краны и грузоподъемные машины
Крановые двигатели работают в старт-стопном режиме и переменной нагрузке. Применение частотных преобразователей позволяет убрать рывки и раскачивание груза при пусках и стопах. Также обеспечивается остановка крана точно в требуемом месте. При этом снижается нагрев электродвигателей и максимальный пусковой момент. - Привод нагнетательных вентиляторов в котельных и дымососах
Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный КПД котельных агрегатов. - Транспортеры, прокатные станы, конвейеры, лифты
Частотник позволяет регулировать скорость перемещения транспортного оборудования без рывков и ударов. Это увеличивает срок службы механических узлов и позволяет экономить электроэнергию на старт-стопных режимах по сравнению с прямым пуском. - Насосные агрегаты и вентиляторы
Благодаря встроенным ПИД-регуляторам, частотники позволяют обойтись без задвижек и вентилей, регулирующих давление и расход. Также значительно увеличивается общий КПД линии водо- или воздухоподачи. - Перемоточные и намоточные станки
Современные частотные приводы Toshiba содержат 2 встроенных ПИД-регулятора: контроля скорости намотки и контроля позиции в регуляторе натяжения. Таким образом можно обойтись без использования внешнего контроллера для управления скоростью и натяжением перемоточного станка. - Электродвигатели станков с ЧПУ и поворотных механизмов
Использование частотника вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. Встроенное в серию AS3 Toshiba управление несколькими режимами точного позиционирования может быть использовано для построения системы управления без использования контроллера. Таким образом, ПЧ широко используются для станков с ЧПУ и высокоточного промышленного оборудования. - Испытательные стенды
В связи с тем, что ПЧ способен регулировать частоту и напряжение на своем выходе, то это можно использоваться для питания разного рода стендовой аппаратуры. Правда, для этого придется после ПЧ установить синусный фильтр для получения синусоидального выходного напряжения. Это позволит подавать на испытуемое оборудование широкий диапазон частот и напряжений.
Преимущества частотных преобразователей
- Экономия электроэнергии
Использование ПЧ позволяет уменьшить пусковые токи и оптимизировать потребляемую мощность благодаря встроенным алгоритмам управления. - Увеличение срока службы электрического оборудования и механизмов
Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межсервисный интервал механизма и увеличить срок эксплуатации электродвигателей.
Появляется возможность отказаться от редукторов, дросселирующих задвижек для регулирования потока, электромагнитных тормозов и прочей регулирующей аппаратуры, снижающей надежность и увеличивающей энергопотребление оборудования. - Отсутствие необходимости проводить техническое обслуживание
Частотники не нуждающихся в регулярной чистке и смазке, как например, задвижки и редукторы. - Возможность удаленного управления и контроля параметров частотного преобразователя и подключенных к нему датчиков
В частотниках Toshiba реализована возможность подключения удаленных устройств телеметрии и телемеханики. Это позволяет ПЧ встраиваться в системы автоматизации. - Широкий диапазон мощностей и типов двигателей
Линейка ПЧ может применяться для двигателей мощностью от 100 Вт и до нескольких МВт, как на асинхронные, так и на синхронные электродвигатели. - Защита электродвигателя от аварий и перегрузок
Частотные преобразователи содержат в себе защиту от перегрузок, коротких замыканий, обрыва фаз. Функции перезапуска при возобновлении подачи электроэнергии позволяют автоматически запускать двигатель. - Множество функциональных настроек приводов Toshiba
Можно перечислить следующие востребованные функции ПЧ:- Автозапуск/перезапуск ПЧ при появлении напряжения питания
- Возможность включения трехфазного частотника в однофазную сеть питания при определенном конфигурировании параметров
- Множество тонких настроек для работы с подъемно-транспортным, насосным оборудованием, станками
- Сохранение истории аварийных отключений
- Встроенный функционал защиты двигателя от перегрева
- Возможность работы с множеством протоколов связи
- ПИД-регуляторы для различных областей применения
- Работа на множестве предустановленных скоростях
- Толчковая работа двигателя для сложного старта
- Автоподхват вращающегося двигателя
- Линейное, S-образное, 5-точечное задание разгона.
- Пропуск проблемных частот (для насосного оборудования)
- Широкий диапазон частот работы 0-400/500 Гц
- Ручное задание диапазона частот работы электродвигателя
- Легкий перенос настроек с одного частотника на другой
- Работа с асинхронными и синхронными электродвигателями
- Возможность трассировки работы преобразователя частоты для нахождения причины возникновения аварии или предупреждения
- Траверс-контроль для текстильных машин
- Защита от повышенного или пониженного момента (тока) двигателя
- Замена двигателей постоянного тока
Ранее для регулирования момента и скорости вращения часто использовались двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Их стоимость существенно дороже асинхронных двигателей и они подключаются с помощью дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные двигатели с частотным регулированием существенно уменьшает стоимость решения.
Внедрение частотных преобразователей дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и техническое обслуживание электродвигателей и оборудования. Появляется возможность использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до 3-х лет.
Частотные преобразователи Toshiba
Компания СПИК СЗМА как единственный официальный дилер Toshiba в России и СНГ предлагает купить частотные преобразователи серии VF-AS3 для решения задач регулирования скорости электродвигателя. Вы получаете максимально качественную техническую поддержку и гарантию долгой работы преобразователя частоты.
Высоковольтные преобразователи частоты ВПЧ
Выше рассмотрены низковольтные частотные преобразователи. Но также существует множество вариантов высоковольтных преобразователей частоты. Компания СПИК СЗМА является дистрибьютором ПЧ среднего напряжения TMEIC.